6.9.1. scikits.learn.metrics.euclidean_distances¶
- scikits.learn.metrics.euclidean_distances(X, Y, Y_norm_squared=None, squared=False)¶
Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors.
Parameters : X: array of shape (n_samples_1, n_features) :
Y: array of shape (n_samples_2, n_features) :
Y_norm_squared: array [n_samples_2], optional :
pre-computed (Y**2).sum(axis=1)
squared: boolean, optional :
This routine will return squared Euclidean distances instead.
Returns : distances: array of shape (n_samples_1, n_samples_2) :
Examples
>>> from scikits.learn.metrics.pairwise import euclidean_distances >>> X = [[0, 1], [1, 1]] >>> # distrance between rows of X >>> euclidean_distances(X, X) array([[ 0., 1.], [ 1., 0.]]) >>> # get distance to origin >>> euclidean_distances(X, [[0, 0]]) array([[ 1. ], [ 1.41421356]])