..
We are putting the title as a raw HTML so that it doesn't appear in
the contents
.. raw:: html
scikits.learn: machine learning in Python
.. only:: html
.. |banner1| image:: auto_examples/cluster/images/plot_affinity_propagation_1.png
:height: 150
:target: auto_examples/cluster/plot_affinity_propagation.html
.. |banner2| image:: auto_examples/gaussian_process/images/plot_gp_regression_1.png
:height: 150
:target: auto_examples/gaussian_process/plot_gp_regression.html
.. |banner3| image:: auto_examples/svm/images/plot_oneclass_1.png
:height: 150
:target: auto_examples/svm/plot_oneclass.html
.. |banner4| image:: auto_examples/cluster/images/plot_lena_ward_segmentation_1.png
:height: 150
:target: auto_examples/cluster/plot_lena_ward_segmentation.html
.. |center-div| raw:: html
.. |end-div| raw:: html
|center-div| |banner1| |banner2| |banner3| |banner4| |end-div|
.. topic:: Easy-to-use and general-purpose machine learning in Python
``scikits.learn`` is a Python module integrating classic machine
learning algorithms in the tightly-knit world of scientific Python
packages (`numpy `_, `scipy
`_, `matplotlib
`_).
It aims to provide simple and efficient solutions to learning
problems that are accessible to everybody and reusable in various
contexts: **machine-learning as a versatile tool for science and
engineering**.
:Features:
* **Solid**: :ref:`supervised-learning`: :ref:`svm`, :ref:`linear_model`.
* **Work in progress**: :ref:`unsupervised-learning`:
:ref:`clustering`, :ref:`mixture`, manifold learning, :ref:`ICA
`, :ref:`gaussian_process`
* **Planed**: Gaussian graphical models, matrix factorization
:License:
Open source, commercially usable: **BSD license** (3 clause)
.. include:: includes/big_toc_css.rst
.. note:: This document describes scikits.learn |release|. For other
versions and printable format, see :ref:`documentation_resources`.
User Guide
==========
.. toctree::
:maxdepth: 2
contents
Example Gallery
===============
.. toctree::
:maxdepth: 2
auto_examples/index
Development
===========
.. toctree::
:maxdepth: 2
developers/index
developers/performance
about