.. We are putting the title as a raw HTML so that it doesn't appear in the contents .. raw:: html

scikits.learn: machine learning in Python

.. only:: html .. |banner1| image:: auto_examples/cluster/images/plot_affinity_propagation_1.png :height: 150 :target: auto_examples/cluster/plot_affinity_propagation.html .. |banner2| image:: auto_examples/gaussian_process/images/plot_gp_regression_1.png :height: 150 :target: auto_examples/gaussian_process/plot_gp_regression.html .. |banner3| image:: auto_examples/svm/images/plot_oneclass_1.png :height: 150 :target: auto_examples/svm/plot_oneclass.html .. |banner4| image:: auto_examples/cluster/images/plot_lena_ward_segmentation_1.png :height: 150 :target: auto_examples/cluster/plot_lena_ward_segmentation.html .. |center-div| raw:: html
.. |end-div| raw:: html
|center-div| |banner1| |banner2| |banner3| |banner4| |end-div| .. topic:: Easy-to-use and general-purpose machine learning in Python ``scikits.learn`` is a Python module integrating classic machine learning algorithms in the tightly-knit world of scientific Python packages (`numpy `_, `scipy `_, `matplotlib `_). It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in various contexts: **machine-learning as a versatile tool for science and engineering**. :Features: * **Solid**: :ref:`supervised-learning`: :ref:`svm`, :ref:`linear_model`. * **Work in progress**: :ref:`unsupervised-learning`: :ref:`clustering`, :ref:`mixture`, manifold learning, :ref:`ICA `, :ref:`gaussian_process` * **Planed**: Gaussian graphical models, matrix factorization :License: Open source, commercially usable: **BSD license** (3 clause) .. include:: includes/big_toc_css.rst .. note:: This document describes scikits.learn |release|. For other versions and printable format, see :ref:`documentation_resources`. User Guide ========== .. toctree:: :maxdepth: 2 contents Example Gallery =============== .. toctree:: :maxdepth: 2 auto_examples/index Development =========== .. toctree:: :maxdepth: 2 developers/index developers/performance about