scikits.learn.cross_val.LeavePLabelOut¶
- class scikits.learn.cross_val.LeavePLabelOut(labels, p, indices=False)¶
Leave-P-Label_Out cross-validation iterator
Provides train/test indices to split data in train test sets
- __init__(labels, p, indices=False)¶
Leave-P-Label_Out cross validation
Provides train/test indices to split data in train test sets
Parameters : labels : list
List of labels
indices: boolean, optional (default False) :
Return train/test split with integer indices or boolean mask. Integer indices are useful when dealing with sparse matrices that cannot be indexed by boolean masks.
Examples
>>> from scikits.learn import cross_val >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> labels = np.array([1, 2, 3]) >>> lpl = cross_val.LeavePLabelOut(labels, p=2) >>> len(lpl) 3 >>> print lpl scikits.learn.cross_val.LeavePLabelOut(labels=[1 2 3], p=2) >>> for train_index, test_index in lpl: ... print "TRAIN:", train_index, "TEST:", test_index ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print X_train, X_test, y_train, y_test TRAIN: [False False True] TEST: [ True True False] [[5 6]] [[1 2] [3 4]] [1] [1 2] TRAIN: [False True False] TEST: [ True False True] [[3 4]] [[1 2] [5 6]] [2] [1 1] TRAIN: [ True False False] TEST: [False True True] [[1 2]] [[3 4] [5 6]] [1] [2 1]