scikits.learn.cross_val.LeavePOut¶
- class scikits.learn.cross_val.LeavePOut(n, p, indices=False)¶
Leave-P-Out cross validation iterator
Provides train/test indices to split data in train test sets
- __init__(n, p, indices=False)¶
Leave-P-Out cross validation iterator
Provides train/test indices to split data in train test sets
Parameters : n: int :
Total number of elements
p: int :
Size test sets
indices: boolean, optional (default False) :
Return train/test split with integer indices or boolean mask. Integer indices are useful when dealing with sparse matrices that cannot be indexed by boolean masks.
Examples
>>> from scikits.learn import cross_val >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> lpo = cross_val.LeavePOut(4, 2) >>> len(lpo) 6 >>> print lpo scikits.learn.cross_val.LeavePOut(n=4, p=2) >>> for train_index, test_index in lpo: ... print "TRAIN:", train_index, "TEST:", test_index ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [False False True True] TEST: [ True True False False] TRAIN: [False True False True] TEST: [ True False True False] TRAIN: [False True True False] TEST: [ True False False True] TRAIN: [ True False False True] TEST: [False True True False] TRAIN: [ True False True False] TEST: [False True False True] TRAIN: [ True True False False] TEST: [False False True True]