scikits.learn.decomposition.NMF¶
- class scikits.learn.decomposition.NMF(n_components=None, init='nndsvdar', sparseness=None, beta=1, eta=0.10000000000000001, tol=0.0001, max_iter=200, nls_max_iter=2000)¶
Non-Negative matrix factorization by Projected Gradient (NMF)
Parameters : X: array, [n_samples, n_features] :
Data the model will be fit to.
n_components: int or None :
Number of components if n_components is not set all components are kept
init: ‘nndsvd’ | ‘nndsvda’ | ‘nndsvdar’ | int | RandomState :
Method used to initialize the procedure. Default: ‘nndsvdar’ Valid options:
- ‘nndsvd’: default Nonnegative Double Singular Value
Decomposition (NNDSVD) initialization (better for sparseness)
- ‘nndsvda’: NNDSVD with zeros filled with the average of X
(better when sparsity is not desired)
- ‘nndsvdar’: NNDSVD with zeros filled with small random values
(generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired)
int seed or RandomState: non-negative random matrices
sparseness: ‘data’ | ‘components’ | None :
Where to enforce sparsity in the model. Default: None
beta: double :
Degree of sparseness, if sparseness is not None. Larger values mean more sparseness. Default: 1
eta: double :
Degree of correctness to mantain, if sparsity is not None. Smaller values mean larger error. Default: 0.1
tol: double :
Tolerance value used in stopping conditions. Default: 1e-4
max_iter: int :
Number of iterations to compute. Default: 200
nls_max_iter: int :
Number of iterations in NLS subproblem. Default: 2000
Notes
This implements C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. http://www.csie.ntu.edu.tw/~cjlin/nmf/
NNDSVD is introduced in C. Boutsidis, E. Gallopoulos: SVD based initialization: A head start for nonnegative matrix factorization - Pattern Recognition, 2008 http://www.cs.rpi.edu/~boutsc/files/nndsvd.pdf
Examples
>>> import numpy as np >>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) >>> from scikits.learn.decomposition import ProjectedGradientNMF >>> model = ProjectedGradientNMF(n_components=2, init=0) >>> model.fit(X) ProjectedGradientNMF(nls_max_iter=2000, eta=0.1, max_iter=200, init=<mtrand.RandomState object at 0x...>, beta=1, sparseness=None, n_components=2, tol=0.0001) >>> model.components_ array([[ 0.77032744, 0.11118662], [ 0.38526873, 0.38228063]]) >>> model.reconstruction_err_ 0.00746... >>> model = ProjectedGradientNMF(n_components=2, init=0, ... sparseness='components') >>> model.fit(X) ProjectedGradientNMF(nls_max_iter=2000, eta=0.1, max_iter=200, init=<mtrand.RandomState object at 0x...>, beta=1, sparseness='components', n_components=2, tol=0.0001) >>> model.components_ array([[ 1.67481991, 0.29614922], [-0. , 0.4681982 ]]) >>> model.reconstruction_err_ 0.513...
Attributes
Methods
- __init__(n_components=None, init='nndsvdar', sparseness=None, beta=1, eta=0.10000000000000001, tol=0.0001, max_iter=200, nls_max_iter=2000)¶
- fit(X, y=None, **params)¶
Learn a NMF model for the data X.
Parameters : X: array, [n_samples, n_features] :
Data matrix to be decomposed
Returns : self :
- fit_transform(X, y=None, **params)¶
Learn a NMF model for the data X and returns the transformed data.
This is more efficient than calling fit followed by transform.
Parameters : X: array, [n_samples, n_features] :
Data matrix to be decomposed
Returns : data: array, [n_samples, n_components] :
Transformed data
- transform(X)¶
Transform the data X according to the fitted NMF model
Parameters : X: array, [n_samples, n_features] :
Data matrix to be transformed by the model
Returns : data: array, [n_samples, n_components] :
Transformed data