scikits.learn.linear_model.RidgeCV¶
- class scikits.learn.linear_model.RidgeCV(alphas=array([, 0.1, 1., 10.], ), fit_intercept=True, score_func=None, loss_func=None, cv=None)¶
Ridge regression with built-in cross-validation.
By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently.
Parameters : alphas: numpy array of shape [n_alpha] :
Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to (2*C)^-1 in other linear models such as LogisticRegression or LinearSVC.
fit_intercept : boolean
Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
loss_func: callable, optional :
function that takes 2 arguments and compares them in order to evaluate the performance of prediciton (small is good) if None is passed, the score of the estimator is maximized
score_func: callable, optional :
function that takes 2 arguments and compares them in order to evaluate the performance of prediciton (big is good) if None is passed, the score of the estimator is maximized
See also
Methods
- __init__(alphas=array([, 0.1, 1., 10.], ), fit_intercept=True, score_func=None, loss_func=None, cv=None)¶
- fit(X, y, sample_weight=1.0, **params)¶
Fit Ridge regression model
Parameters : X : numpy array of shape [n_samples, n_features]
Training data
y : numpy array of shape [n_samples] or [n_samples, n_responses]
Target values
sample_weight : float or numpy array of shape [n_samples]
Sample weight
cv : cross-validation generator, optional
If None, Generalized Cross-Validationn (efficient Leave-One-Out) will be used.
Returns : self : Returns self.
- predict(X)¶
Predict using the linear model
Parameters : X : numpy array of shape [n_samples, n_features]
Returns : C : array, shape = [n_samples]
Returns predicted values.
- score(X, y)¶
Returns the coefficient of determination of the prediction
Parameters : X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Returns : z : float