This page

scikits.learn.pls.PLSSVD

class scikits.learn.pls.PLSSVD(n_components=2, scale=True, copy=True)

Partial Least Square SVD

Simply perform a svd on the crosscovariance matrix: X’Y The are no iterative deflation here.

Parameters :

X: array-like of predictors, shape (n_samples, p) :

Training vector, where n_samples in the number of samples and p is the number of predictors. X will be centered before any analysis.

Y: array-like of response, shape (n_samples, q) :

Training vector, where n_samples in the number of samples and q is the number of response variables. X will be centered before any analysis.

n_components: int, number of components to keep. (default 2). :

scale: boolean, scale X and Y (default True) :

See also

PLSCanonical, CCA

Attributes

x_weights_: array, [p, n_components] X block weights vectors.
y_weights_: array, [q, n_components] Y block weights vectors.
x_scores_: array, [n_samples, n_components] X scores.
y_scores_: array, [n_samples, n_components] Y scores.

Methods

__init__(n_components=2, scale=True, copy=True)
transform(X, Y=None)

Apply the dimension reduction learned on the train data.