This page

Citing

Please consider citing the scikit-learn.

Recursive feature elimination with cross-validation

A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation.

../_images/plot_rfe_with_cross_validation_1.png

Python source code: plot_rfe_with_cross_validation.py

print __doc__

import numpy as np
from sklearn.svm import SVC
from sklearn.cross_validation import StratifiedKFold
from sklearn.feature_selection import RFECV
from sklearn.datasets import samples_generator
from sklearn.metrics import zero_one

# Build a classification task using 3 informative features
X, y = samples_generator.make_classification(n_samples=1000, n_features=25,
                                             n_informative=3, n_redundant=2,
                                             n_repeated=0, n_classes=8,
                                             n_clusters_per_class=1,
                                             random_state=0)

# Create the RFE object and compute a cross-validated score.
svc = SVC(kernel="linear")
rfecv = RFECV(estimator=svc,
              step=1,
              cv=StratifiedKFold(y, 2),
              loss_func=zero_one)
rfecv.fit(X, y)

print "Optimal number of features : %d" % rfecv.n_features_

# Plot number of features VS. cross-validation scores
import pylab as pl
pl.figure()
pl.xlabel("Number of features selected")
pl.ylabel("Cross validation score (nb of misclassifications)")
pl.plot(xrange(1, len(rfecv.cv_scores_) + 1), rfecv.cv_scores_)
pl.show()