9.13.6. sklearn.cross_validation.LeavePLabelOut¶
- class sklearn.cross_validation.LeavePLabelOut(labels, p, indices=False)¶
Leave-P-Label_Out cross-validation iterator
Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers.
For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits.
The difference between LeavePLabelOut and LeaveOneLabelOut is that the former builds the test sets with all the samples assigned to p different values of the labels while the latter uses samples all assigned the same labels.
Parameters : labels : array-like of int with shape (n_samples,)
Arbitrary domain-specific stratification of the data to be used to draw the splits.
p : int
Number of samples to leave out in the test split.
indices: boolean, optional (default False) :
Return train/test split with integer indices or boolean mask. Integer indices are useful when dealing with sparse matrices that cannot be indexed by boolean masks.
Examples
>>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> labels = np.array([1, 2, 3]) >>> lpl = cross_validation.LeavePLabelOut(labels, p=2) >>> len(lpl) 3 >>> print lpl sklearn.cross_validation.LeavePLabelOut(labels=[1 2 3], p=2) >>> for train_index, test_index in lpl: ... print "TRAIN:", train_index, "TEST:", test_index ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print X_train, X_test, y_train, y_test TRAIN: [False False True] TEST: [ True True False] [[5 6]] [[1 2] [3 4]] [1] [1 2] TRAIN: [False True False] TEST: [ True False True] [[3 4]] [[1 2] [5 6]] [2] [1 1] TRAIN: [ True False False] TEST: [False True True] [[1 2]] [[3 4] [5 6]] [1] [2 1]
- __init__(labels, p, indices=False)¶