9.13.2. sklearn.cross_validation.LeavePOut¶
- class sklearn.cross_validation.LeavePOut(n, p, indices=False)¶
Leave-P-Out cross validation iterator
Provides train/test indices to split data in train test sets. The test set is built using p samples while the remaining samples form the training set.
Due to the high number of iterations which grows with the number of samples this cross validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or ShuffleSplit.
Parameters : n: int :
Total number of elements
p: int :
Size of the test sets
indices: boolean, optional (default False) :
Return train/test split with integer indices or boolean mask. Integer indices are useful when dealing with sparse matrices that cannot be indexed by boolean masks.
Examples
>>> from sklearn import cross_validation >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> lpo = cross_validation.LeavePOut(4, 2) >>> len(lpo) 6 >>> print lpo sklearn.cross_validation.LeavePOut(n=4, p=2) >>> for train_index, test_index in lpo: ... print "TRAIN:", train_index, "TEST:", test_index ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [False False True True] TEST: [ True True False False] TRAIN: [False True False True] TEST: [ True False True False] TRAIN: [False True True False] TEST: [ True False False True] TRAIN: [ True False False True] TEST: [False True True False] TRAIN: [ True False True False] TEST: [False True False True] TRAIN: [ True True False False] TEST: [False False True True]
- __init__(n, p, indices=False)¶