9.13.8. sklearn.cross_validation.ShuffleSplit¶
- class sklearn.cross_validation.ShuffleSplit(n, n_iterations=10, test_fraction=0.10000000000000001, indices=False, random_state=None)¶
Random permutation cross-validation iterator.
Yields indices to split data into training and test sets.
Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets.
Parameters : n : int
Total number of elements in the dataset.
n_iterations : int (default 10)
Number of re-shuffling & splitting iterations.
test_fraction : float (default 0.1)
Should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split.
indices : boolean, optional (default False)
Return train/test split with integer indices or boolean mask. Integer indices are useful when dealing with sparse matrices that cannot be indexed by boolean masks.
random_state : int or RandomState
Pseudo-random number generator state used for random sampling.
See also
- Bootstrap
- cross-validation using re-sampling with replacement.
Examples
>>> from sklearn import cross_validation >>> rs = cross_validation.ShuffleSplit(4, n_iterations=3, test_fraction=.25, ... random_state=0) >>> len(rs) 3 >>> print rs ... ShuffleSplit(4, n_iterations=3, test_fraction=0.25, indices=False, ...) >>> for train_index, test_index in rs: ... print "TRAIN:", train_index, "TEST:", test_index ... TRAIN: [False True True True] TEST: [ True False False False] TRAIN: [ True True True False] TEST: [False False False True] TRAIN: [ True False True True] TEST: [False True False False]
- __init__(n, n_iterations=10, test_fraction=0.10000000000000001, indices=False, random_state=None)¶