9.2.7. sklearn.linear_model.ElasticNetCV¶
- class sklearn.linear_model.ElasticNetCV(rho=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=0.0001, cv=None, overwrite_X=False, verbose=0)¶
Elastic Net model with iterative fitting along a regularization path
The best model is selected by cross-validation.
Parameters : rho : float, optional
float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For rho = 0 the penalty is an L1 penalty. For rho = 1 it is an L2 penalty. For 0 < rho < 1, the penalty is a combination of L1 and L2
eps : float, optional
Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.
n_alphas : int, optional
Number of alphas along the regularization path
alphas : numpy array, optional
List of alphas where to compute the models. If None alphas are set automatically
precompute : True | False | ‘auto’ | array-like
Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let us decide. The Gram matrix can also be passed as argument.
max_iter: int, optional :
The maximum number of iterations
tol: float, optional :
The tolerance for the optimization: if the updates are smaller than ‘tol’, the optimization code checks the dual gap for optimality and continues until it is smaller than tol.
cv : integer or crossvalidation generator, optional
If an integer is passed, it is the number of fold (default 3). Specific crossvalidation objects can be passed, see sklearn.cross_validation module for the list of possible objects
verbose : bool or integer
amount of verbosity
Notes
See examples/linear_model/lasso_path_with_crossvalidation.py for an example.
To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a fortran contiguous numpy array.
The parameter rho corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. More specifically, the penalty is:
alpha*rho*L1 + alpha*(1-rho)*L2
If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:
a*L1 + b*L2
for:
alpha = a + b and rho = a/(a+b)
Methods
estimator fit(X, y) Fit linear model with coordinate descent along decreasing alphas path(X, y[, rho, eps, n_alphas, alphas, ...]) Compute Elastic-Net path with coordinate descent predict(X) Predict using the linear model score(X, y) Returns the coefficient of determination of the prediction set_params(**params) Set the parameters of the estimator. - __init__(rho=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=0.0001, cv=None, overwrite_X=False, verbose=0)¶
- estimator¶
alias of ElasticNet
- fit(X, y)¶
Fit linear model with coordinate descent along decreasing alphas using cross-validation
Parameters : X : numpy array of shape [n_samples,n_features]
Training data. Pass directly as fortran contiguous data to avoid unnecessary memory duplication
y : numpy array of shape [n_samples]
Target values
fit_params : kwargs
keyword arguments passed to the Lasso fit method
- static path(X, y, rho=0.5, eps=0.001, n_alphas=100, alphas=None, precompute='auto', Xy=None, fit_intercept=True, normalize=False, overwrite_X=False, verbose=False, **params)¶
Compute Elastic-Net path with coordinate descent
Parameters : X : numpy array of shape [n_samples, n_features]
Training data. Pass directly as fortran contiguous data to avoid unnecessary memory duplication
y : numpy array of shape [n_samples]
Target values
rho : float, optional
float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). rho=1 corresponds to the Lasso
eps : float
Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3
n_alphas : int, optional
Number of alphas along the regularization path
alphas : numpy array, optional
List of alphas where to compute the models. If None alphas are set automatically
precompute : True | False | ‘auto’ | array-like
Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let us decide. The Gram matrix can also be passed as argument.
Xy : array-like, optional
Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomuted.
fit_intercept : bool
Fit or not an intercept
normalize : boolean, optional
If True, the regressors X are normalized
overwrite_X : boolean, optional
If True, X will not be copied Default is False
verbose : bool or integer
Amount of verbosity
params : kwargs
keyword arguments passed to the Lasso objects
Returns : models : a list of models along the regularization path
Notes
See examples/plot_lasso_coordinate_descent_path.py for an example.
- predict(X)¶
Predict using the linear model
Parameters : X : numpy array of shape [n_samples, n_features]
Returns : C : array, shape = [n_samples]
Returns predicted values.
- score(X, y)¶
Returns the coefficient of determination of the prediction
Parameters : X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Returns : z : float
- set_params(**params)¶
Set the parameters of the estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns : self :