9.18.3. sklearn.manifold.locally_linear_embedding¶
- sklearn.manifold.locally_linear_embedding(X, n_neighbors, out_dim, reg=0.001, eigen_solver='auto', tol=9.9999999999999995e-07, max_iter=100, method='standard', hessian_tol=0.0001, modified_tol=9.9999999999999998e-13)¶
Perform a Locally Linear Embedding analysis on the data.
Parameters : X : array-like or BallTree, shape [n_samples, n_features]
Input data, in the form of a numpy array or a precomputed BallTree.
n_neighbors : integer
number of neighbors to consider for each point.
out_dim : integer
number of coordinates for the manifold.
reg : float
regularization constant, multiplies the trace of the local covariance matrix of the distances.
eigen_solver : string, {‘auto’, ‘arpack’, ‘dense’}
auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode.
For this method, M may be a dense matrix, sparse matrix, or general linear operator.
- dense : use standard dense matrix operations for the eigenvalue
decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems.
tol : float, optional
Tolerance for ‘arpack’ method Not used if eigen_solver==’dense’.
max_iter : integer
maximum number of iterations for the arpack solver.
method : string [‘standard’ | ‘hessian’ | ‘modified’]
- standard : use the standard locally linear embedding algorithm.
see reference [1]
- hessian : use the Hessian eigenmap method. This method requires
n_neighbors > out_dim * (1 + (out_dim + 1) / 2. see reference [2]
- modified : use the modified locally linear embedding algorithm.
see reference [3]
- ltsa : use local tangent space alignment algorithm
see reference [4]
hessian_tol : float, optional
Tolerance for Hessian eigenmapping method. Only used if method == ‘hessian’
modified_tol : float, optional
Tolerance for modified LLE method. Only used if method == ‘modified’
Returns : Y : array-like, shape [n_samples, out_dim]
Embedding vectors.
squared_error : float
Reconstruction error for the embedding vectors. Equivalent to norm(Y - W Y, ‘fro’)**2, where W are the reconstruction weights.