9.17.6. sklearn.preprocessing.scale¶
- sklearn.preprocessing.scale(X, axis=0, with_mean=True, with_std=True, copy=True)¶
Standardize a dataset along any axis
Center to the mean and component wise scale to unit variance.
Parameters : X : array-like
The data to center and scale.
axis : int (0 by default)
axis used to compute the means and standard deviations along. If 0, independently standardize each feature, otherwise (if 1) standardize each sample.
with_mean : boolean, True by default
If True, center the data before scaling.
with_std : boolean, True by default
If True, scale the data to unit variance (or equivalently, unit standard deviation).
copy : boolean, optional, default is True
set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1).
See also
sklearn.preprocessing.Scaler, scaling, sklearn.pipeline.Pipeline