This page

Citing

Please consider citing the scikit-learn.

9.1.1. sklearn.svm.SVC

class sklearn.svm.SVC(C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False, tol=0.001)

C-Support Vector Classification.

Parameters :

C : float, optional (default=1.0)

Penalty parameter C of the error term.

kernel : string, optional (default=’rbf’)

Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’. If none is given, ‘rbf’ will be used.

degree : int, optional (default=3)

Degree of kernel function. It is significant only in ‘poly’ and ‘sigmoid’.

gamma : float, optional (default=0.0)

Kernel coefficient for ‘rbf’ and ‘poly’. If gamma is 0.0 then 1/n_features will be used instead.

coef0 : float, optional (default=0.0)

Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.

probability: boolean, optional (default=False) :

Whether to enable probability estimates. This must be enabled prior to calling prob_predict.

shrinking: boolean, optional (default=True) :

Whether to use the shrinking heuristic.

tol: float, optional (default=1e-3) :

Tolerance for stopping criterion.

See also

SVR, LinearSVC

Examples

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> from sklearn.svm import SVC
>>> clf = SVC()
>>> clf.fit(X, y)
SVC(C=1.0, coef0=0.0, degree=3, gamma=0.5, kernel='rbf', probability=False,
  shrinking=True, tol=0.001)
>>> print clf.predict([[-0.8, -1]])
[ 1.]

Attributes

support_ array-like, shape = [n_SV] Index of support vectors.
support_vectors_ array-like, shape = [n_SV, n_features] Support vectors.
n_support_ array-like, dtype=int32, shape = [n_class] number of support vector for each class.
dual_coef_ array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function.
coef_ array, shape = [n_class-1, n_features] Weights asigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel.
intercept_ array, shape = [n_class * (n_class-1) / 2] Constants in decision function.

Methods

decision_function(X) Distance of the samples T to the separating hyperplane.
fit(X, y[, class_weight, sample_weight, ...]) Fit the SVM model according to the given training data.
predict(X) Perform classification or regression samples in X.
predict_log_proba(T) Compute the log likehoods each possible outcomes of samples in T.
predict_proba(X) Compute the likehoods each possible outcomes of samples in T.
score(X, y) Returns the mean error rate on the given test data and labels.
set_params(**params) Set the parameters of the estimator.
__init__(C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False, tol=0.001)
decision_function(X)

Distance of the samples T to the separating hyperplane.

Parameters :

X : array-like, shape = [n_samples, n_features]

Returns :

X : array-like, shape = [n_samples, n_class * (n_class-1) / 2]

Returns the decision function of the sample for each class in the model.

fit(X, y, class_weight=None, sample_weight=None, cache_size=100.0)

Fit the SVM model according to the given training data.

Parameters :

X : array-like, shape = [n_samples, n_features]

Training vectors, where n_samples is the number of samples and n_features is the number of features.

y : array-like, shape = [n_samples]

Target values (integers in classification, real numbers in regression)

class_weight : {dict, ‘auto’}, optional

Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The ‘auto’ mode uses the values of y to automatically adjust weights inversely proportional to class frequencies.

sample_weight : array-like, shape = [n_samples], optional

Weights applied to individual samples (1. for unweighted).

cache_size: float, optional :

Specify the size of the cache (in MB)

Returns :

self : object

Returns self.

Notes

If X and y are not C-ordered and contiguous arrays, they are copied.

predict(X)

Perform classification or regression samples in X.

For a classification model, the predicted class for each sample in X is returned. For a regression model, the function value of X calculated is returned.

For an one-class model, +1 or -1 is returned.

Parameters :X : array-like, shape = [n_samples, n_features]
Returns :C : array, shape = [n_samples]
predict_log_proba(T)

Compute the log likehoods each possible outcomes of samples in T.

The model need to have probability information computed at training time: fit with attribute probability set to True.

Parameters :

T : array-like, shape = [n_samples, n_features]

Returns :

T : array-like, shape = [n_samples, n_classes]

Returns the log-probabilities of the sample for each class in the model, where classes are ordered by arithmetical order.

Notes

The probability model is created using cross validation, so the results can be slightly different than those obtained by predict. Also, it will meaningless results on very small datasets.

predict_proba(X)

Compute the likehoods each possible outcomes of samples in T.

The model need to have probability information computed at training time: fit with attribute probability set to True.

Parameters :

X : array-like, shape = [n_samples, n_features]

Returns :

X : array-like, shape = [n_samples, n_classes]

Returns the probability of the sample for each class in the model, where classes are ordered by arithmetical order.

Notes

The probability model is created using cross validation, so the results can be slightly different than those obtained by predict. Also, it will meaningless results on very small datasets.

score(X, y)

Returns the mean error rate on the given test data and labels.

Parameters :

X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Labels for X.

Returns :

z : float

set_params(**params)

Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns :self :