.. _example_decomposition_plot_faces_decomposition.py: ============================ Faces dataset decompositions ============================ This example applies to :doc:`/datasets/olivetti_faces` different unsupervised matrix decomposition (dimension reduction) methods from the module :py:mod:`sklearn.decomposition` (see the documentation chapter :ref:`decompositions`) . .. rst-class:: horizontal * .. image:: images/plot_faces_decomposition_5.png :scale: 50 * .. image:: images/plot_faces_decomposition_3.png :scale: 50 * .. image:: images/plot_faces_decomposition_7.png :scale: 50 * .. image:: images/plot_faces_decomposition_6.png :scale: 50 * .. image:: images/plot_faces_decomposition_1.png :scale: 50 * .. image:: images/plot_faces_decomposition_4.png :scale: 50 * .. image:: images/plot_faces_decomposition_2.png :scale: 50 **Script output**:: Dataset consists of 400 faces Extracting the top 6 Eigenfaces - RandomizedPCA... done in 0.217s Extracting the top 6 Non-negative components - NMF... done in 1.240s Extracting the top 6 Independent components - FastICA... done in 1.573s Extracting the top 6 Sparse comp. - MiniBatchSparsePCA... done in 1.163s Extracting the top 6 MiniBatchDictionaryLearning... done in 1.409s Extracting the top 6 Cluster centers - MiniBatchKMeans... done in 0.657s **Python source code:** :download:`plot_faces_decomposition.py ` .. literalinclude:: plot_faces_decomposition.py :lines: 12-