This documentation is for scikit-learn version 0.11-gitOther versions

Citing

If you use the software, please consider citing scikit-learn.

This page

8.11.1. sklearn.hmm.GaussianHMM

class sklearn.hmm.GaussianHMM(n_components=1, covariance_type='diag', startprob=None, transmat=None, startprob_prior=None, transmat_prior=None, means_prior=None, means_weight=0, covars_prior=0.01, covars_weight=1)

Hidden Markov Model with Gaussian emissions

Representation of a hidden Markov model probability distribution. This class allows for easy evaluation of, sampling from, and maximum-likelihood estimation of the parameters of a HMM.

Parameters :

n_components : int

Number of states.

_covariance_type : string

String describing the type of covariance parameters to use. Must be one of ‘spherical’, ‘tied’, ‘diag’, ‘full’. Defaults to ‘diag’.

See also

GMM
Gaussian mixture model

Examples

>>> from sklearn.hmm import GaussianHMM
>>> GaussianHMM(n_components=2)
...                             
GaussianHMM(covariance_type=None, covars_prior=0.01, covars_weight=1,
means_prior=None, means_weight=0, n_components=2, startprob=None,
startprob_prior=1.0, transmat=None, transmat_prior=1.0)

Attributes

covariance_type string String describing the type of covariance parameters used by the model. Must be one of ‘spherical’, ‘tied’, ‘diag’, ‘full’.
n_features int Dimensionality of the Gaussian emissions.
n_components int Number of states in the model.
transmat array, shape (n_components, n_components) Matrix of transition probabilities between states.
startprob array, shape (‘n_components`,) Initial state occupation distribution.
means array, shape (n_components, n_features) Mean parameters for each state.
covars array

Covariance parameters for each state. The shape depends on _covariance_type:

(`n_components`,)                   if 'spherical',
(`n_features`, `n_features`)              if 'tied',
(`n_components`, `n_features`)           if 'diag',
(`n_components`, `n_features`, `n_features`)  if 'full'

Methods

decode(obs[, maxrank, beamlogprob]) Find most likely state sequence corresponding to obs.
eval(obs[, maxrank, beamlogprob]) Compute the log probability under the model and compute posteriors
fit(obs[, n_iter, thresh, params, ...]) Estimate model parameters.
get_params([deep]) Get parameters for the estimator
predict(obs, **kwargs) Find most likely state sequence corresponding to obs.
predict_proba(obs, **kwargs) Compute the posterior probability for each state in the model
rvs([n, random_state]) Generate random samples from the model.
score(obs[, maxrank, beamlogprob]) Compute the log probability under the model.
set_params(**params) Set the parameters of the estimator.
__init__(n_components=1, covariance_type='diag', startprob=None, transmat=None, startprob_prior=None, transmat_prior=None, means_prior=None, means_weight=0, covars_prior=0.01, covars_weight=1)
decode(obs, maxrank=None, beamlogprob=-inf)

Find most likely state sequence corresponding to obs.

Uses the Viterbi algorithm.

Parameters :

obs : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

maxrank : int

Maximum rank to evaluate for rank pruning. If not None, only consider the top maxrank states in the inner sum of the forward algorithm recursion. Defaults to None (no rank pruning). See The HTK Book for more details.

beamlogprob : float

Width of the beam-pruning beam in log-probability units. Defaults to -numpy.Inf (no beam pruning). See The HTK Book for more details.

Returns :

viterbi_logprob : float

Log probability of the maximum likelihood path through the HMM

states : array_like, shape (n,)

Index of the most likely states for each observation

See also

eval
Compute the log probability under the model and posteriors
score
Compute the log probability under the model
eval(obs, maxrank=None, beamlogprob=-inf)

Compute the log probability under the model and compute posteriors

Implements rank and beam pruning in the forward-backward algorithm to speed up inference in large models.

Parameters :

obs : array_like, shape (n, n_features)

Sequence of n_features-dimensional data points. Each row corresponds to a single point in the sequence.

maxrank : int

Maximum rank to evaluate for rank pruning. If not None, only consider the top maxrank states in the inner sum of the forward algorithm recursion. Defaults to None (no rank pruning). See The HTK Book for more details.

beamlogprob : float

Width of the beam-pruning beam in log-probability units. Defaults to -numpy.Inf (no beam pruning). See The HTK Book for more details.

Returns :

logprob : array_like, shape (n,)

Log probabilities of the sequence obs

posteriors: array_like, shape (n, n_components) :

Posterior probabilities of each state for each observation

See also

score
Compute the log probability under the model
decode
Find most likely state sequence corresponding to a obs
fit(obs, n_iter=10, thresh=0.01, params='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ', init_params='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ', maxrank=None, beamlogprob=-inf, **kwargs)

Estimate model parameters.

An initialization step is performed before entering the EM algorithm. If you want to avoid this step, set the keyword argument init_params to the empty string ‘’. Likewise, if you would like just to do an initialization, call this method with n_iter=0.

Parameters :

obs : list

List of array-like observation sequences (shape (n_i, n_features)).

n_iter : int, optional

Number of iterations to perform.

thresh : float, optional

Convergence threshold.

params : string, optional

Controls which parameters are updated in the training process. Can contain any combination of ‘s’ for startprob, ‘t’ for transmat, ‘m’ for means, and ‘c’ for covars, etc. Defaults to all parameters.

init_params : string, optional

Controls which parameters are initialized prior to training. Can contain any combination of ‘s’ for startprob, ‘t’ for transmat, ‘m’ for means, and ‘c’ for covars, etc. Defaults to all parameters.

maxrank : int, optional

Maximum rank to evaluate for rank pruning. If not None, only consider the top maxrank states in the inner sum of the forward algorithm recursion. Defaults to None (no rank pruning). See “The HTK Book” for more details.

beamlogprob : float, optional

Width of the beam-pruning beam in log-probability units. Defaults to -numpy.Inf (no beam pruning). See “The HTK Book” for more details.

Notes

In general, logprob should be non-decreasing unless aggressive pruning is used. Decreasing logprob is generally a sign of overfitting (e.g. a covariance parameter getting too small). You can fix this by getting more training data, or decreasing covars_prior.

get_params(deep=True)

Get parameters for the estimator

Parameters :

deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are estimators.

predict(obs, **kwargs)

Find most likely state sequence corresponding to obs.

Parameters :

obs : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

maxrank : int

Maximum rank to evaluate for rank pruning. If not None, only consider the top maxrank states in the inner sum of the forward algorithm recursion. Defaults to None (no rank pruning). See The HTK Book for more details.

beamlogprob : float

Width of the beam-pruning beam in log-probability units. Defaults to -numpy.Inf (no beam pruning). See The HTK Book for more details.

Returns :

states : array_like, shape (n,)

Index of the most likely states for each observation

predict_proba(obs, **kwargs)

Compute the posterior probability for each state in the model

Parameters :

obs : array_like, shape (n, n_features)

List of n_features-dimensional data points. Each row corresponds to a single data point.

See eval() for a list of accepted keyword arguments. :

Returns :

T : array-like, shape (n, n_components)

Returns the probability of the sample for each state in the model.

rvs(n=1, random_state=None)

Generate random samples from the model.

Parameters :

n : int

Number of samples to generate.

Returns :

obs : array_like, length n

List of samples

score(obs, maxrank=None, beamlogprob=-inf)

Compute the log probability under the model.

Parameters :

obs : array_like, shape (n, n_features)

Sequence of n_features-dimensional data points. Each row corresponds to a single data point.

maxrank : int

Maximum rank to evaluate for rank pruning. If not None, only consider the top maxrank states in the inner sum of the forward algorithm recursion. Defaults to None (no rank pruning). See The HTK Book for more details.

beamlogprob : float

Width of the beam-pruning beam in log-probability units. Defaults to -numpy.Inf (no beam pruning). See The HTK Book for more details.

Returns :

logprob : array_like, shape (n,)

Log probabilities of each data point in obs

See also

eval
Compute the log probability under the model and posteriors
decode
Find most likely state sequence corresponding to a obs
set_params(**params)

Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns :self :