This documentation is for scikit-learn version 0.10Other versions

Citing

If you use the software, please consider citing scikit-learn.

This page

Hierarchical clustering: structured vs unstructured ward

Example builds a swiss roll dataset and runs Hierarchical clustering on their position.

In a first step, the hierarchical clustering without connectivity constraints on structure, solely based on distance, whereas in a second step clustering restricted to the k-Nearest Neighbors graph: it’s a hierarchical clustering with structure prior.

Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a nice parcellation of the swiss roll.

  • ../../_images/plot_ward_structured_vs_unstructured_2.png
  • ../../_images/plot_ward_structured_vs_unstructured_1.png

Script output:

Compute unstructured hierarchical clustering...
Elapsed time:  1.67695522308
Number of points:  1000
Compute structured hierarchical clustering...
Elapsed time:  0.172141075134
Number of points:  1000

Python source code: plot_ward_structured_vs_unstructured.py

# Authors : Vincent Michel, 2010
#           Alexandre Gramfort, 2010
#           Gael Varoquaux, 2010
# License: BSD

print __doc__

import time as time
import numpy as np
import pylab as pl
import mpl_toolkits.mplot3d.axes3d as p3
from sklearn.cluster import Ward
from sklearn.datasets.samples_generator import make_swiss_roll

###############################################################################
# Generate data (swiss roll dataset)
n_samples = 1000
noise = 0.05
X, _ = make_swiss_roll(n_samples, noise)
# Make it thinner
X[:, 1] *= .5

###############################################################################
# Compute clustering
print "Compute unstructured hierarchical clustering..."
st = time.time()
ward = Ward(n_clusters=6).fit(X)
label = ward.labels_
print "Elapsed time: ", time.time() - st
print "Number of points: ", label.size

###############################################################################
# Plot result
fig = pl.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
for l in np.unique(label):
    ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2],
              'o', color=pl.cm.jet(np.float(l) / np.max(label + 1)))
pl.title('Without connectivity constraints')


###############################################################################
# Define the structure A of the data. Here a 10 nearest neighbors
from sklearn.neighbors import kneighbors_graph
connectivity = kneighbors_graph(X, n_neighbors=10)

###############################################################################
# Compute clustering
print "Compute structured hierarchical clustering..."
st = time.time()
ward = Ward(n_clusters=6, connectivity=connectivity).fit(X)
label = ward.labels_
print "Elapsed time: ", time.time() - st
print "Number of points: ", label.size

###############################################################################
# Plot result
fig = pl.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
for l in np.unique(label):
    ax.plot3D(X[label == l, 0], X[label == l, 1], X[label == l, 2],
              'o', color=pl.cm.jet(float(l) / np.max(label + 1)))
pl.title('With connectivity constraints')

pl.show()