This documentation is for scikit-learn version 0.10Other versions

Citing

If you use the software, please consider citing scikit-learn.

This page

Pipeline Anova SVM

Simple usage of Pipeline that runs successively a univariate feature selection with anova and then a C-SVM of the selected features.

Python source code: feature_selection_pipeline.py

print __doc__

from sklearn import svm
from sklearn.datasets import samples_generator
from sklearn.feature_selection import SelectKBest, f_regression
from sklearn.pipeline import Pipeline

# import some data to play with
X, y = samples_generator.make_classification(
        n_features=20, n_informative=3, n_redundant=0,
        n_classes=4, n_clusters_per_class=2)

# ANOVA SVM-C
# 1) anova filter, take 3 best ranked features
anova_filter = SelectKBest(f_regression, k=3)
# 2) svm
clf = svm.SVC(kernel='linear')

anova_svm = Pipeline([('anova', anova_filter), ('svm', clf)])
anova_svm.fit(X, y)
anova_svm.predict(X)