8.4.2.10. sklearn.datasets.make_sparse_uncorrelated¶
- sklearn.datasets.make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None)¶
Generate a random regression problem with sparse uncorrelated design
This dataset is described in Celeux et al [1]. as:
X ~ N(0, 1) y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]
Only the first 4 features are informative. The remaining features are useless.
Parameters : n_samples : int, optional (default=100)
The number of samples.
n_features : int, optional (default=10)
The number of features.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
Returns : X : array of shape [n_samples, n_features]
The input samples.
y : array of shape [n_samples]
The output values.
Notes
References:
[R51] G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, “Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation”, 2009.