8.4.2.10. sklearn.datasets.make_sparse_uncorrelated¶
- sklearn.datasets.make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None)¶
- Generate a random regression problem with sparse uncorrelated design - This dataset is described in Celeux et al [1]. as: - X ~ N(0, 1) y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3] - Only the first 4 features are informative. The remaining features are useless. - Parameters : - n_samples : int, optional (default=100) - The number of samples. - n_features : int, optional (default=10) - The number of features. - random_state : int, RandomState instance or None, optional (default=None) - If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. - Returns : - X : array of shape [n_samples, n_features] - The input samples. - y : array of shape [n_samples] - The output values. - Notes - References: - [R51] - G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, “Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation”, 2009. 
