6.10.1. scikits.learn.pca.PCA¶
- class scikits.learn.pca.PCA(n_components=None, copy=True, whiten=False)¶
Principal component analysis (PCA)
Linear dimensionality reduction using Singular Value Decomposition of the data and keeping only the most significant singular vectors to project the data to a lower dimensional space.
This implementation uses the scipy.linalg implementation of the singular value decomposition. It only works for dense arrays and is not scalable to large dimensional data.
The time complexity of this implementation is O(n ** 3) assuming n ~ n_samples ~ n_features.
Parameters : X: array-like, shape (n_samples, n_features) :
Training vector, where n_samples in the number of samples and n_features is the number of features.
n_components: int, none or string :
Number of components to keep. if n_components is not set all components are kept:
n_components == min(n_samples, n_features)
if n_components == ‘mle’, Minka’s MLE is used to guess the dimension
copy: bool :
If False, data passed to fit are overwritten
whiten: bool, optional :
When True (False by default) the components_ vectors are divided by n_samples times singular values to ensure uncorrelated outputs with unit component-wise variances.
Whitening will remove some information from the transformed signal (the relative variance scales of the components) but can sometime improve the predictive accuracy of the downstream estimators by making there data respect some hard-wired assumptions.
See also
ProbabilisticPCA, RandomizedPCA
Notes
For n_components=’mle’, this class uses the method of Thomas P. Minka: Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604
Examples
>>> import numpy as np >>> from scikits.learn.pca import PCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> pca = PCA(n_components=2) >>> pca.fit(X) PCA(copy=True, n_components=2, whiten=False) >>> print pca.explained_variance_ratio_ [ 0.99244289 0.00755711]
Attributes
Methods
fit transform - __init__(n_components=None, copy=True, whiten=False)¶
- fit(X, **params)¶
Fit the model to the data X
- transform(X)¶
Apply the dimension reduction learned on the train data.