8.3.10. sklearn.cross_validation.cross_val_score¶
- sklearn.cross_validation.cross_val_score(estimator, X, y=None, score_func=None, cv=None, n_jobs=1, verbose=0)¶
- Evaluate a score by cross-validation - Parameters : - estimator: estimator object implementing ‘fit’ : - The object to use to fit the data - X: array-like of shape at least 2D : - The data to fit. - y: array-like, optional : - The target variable to try to predict in the case of supervised learning. - score_func: callable, optional : - callable, has priority over the score function in the estimator. In a non-supervised setting, where y is None, it takes the test data (X_test) as its only argument. In a supervised setting it takes the test target (y_true) and the test prediction (y_pred) as arguments. - cv: cross-validation generator, optional : - A cross-validation generator. If None, a 3-fold cross validation is used or 3-fold stratified cross-validation when y is supplied and estimator is a classifier. - n_jobs: integer, optional : - The number of CPUs to use to do the computation. -1 means ‘all CPUs’. - verbose: integer, optional : - The verbosity level 
