8.4.1.6. sklearn.datasets.load_digits¶
- sklearn.datasets.load_digits(n_class=10)¶
- Load and return the digits dataset (classification). - Each datapoint is a 8x8 image of a digit. - Classes - 10 - Samples per class - ~180 - Samples total - 1797 - Dimensionality - 64 - Features - integers 0-16 - Parameters : - n_class : integer, between 0 and 10, optional (default=10) - The number of classes to return. - Returns : - data : Bunch - Dictionary-like object, the interesting attributes are: ‘data’, the data to learn, ‘images’, the images corresponding to each sample, ‘target’, the classification labels for each sample, ‘target_names’, the meaning of the labels, and ‘DESCR’, the full description of the dataset. - Examples - To load the data and visualize the images: - >>> from sklearn.datasets import load_digits >>> digits = load_digits() >>> digits.data.shape (1797, 64) >>> import pylab as pl >>> pl.gray() >>> pl.matshow(digits.images[0]) >>> pl.show() 
