8.4.2.1. sklearn.datasets.make_blobs¶
- sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None)¶
- Generate isotropic Gaussian blobs for clustering. - Parameters : - n_samples : int, optional (default=100) - The total number of points equally divided among clusters. - n_features : int, optional (default=2) - The number of features for each sample. - centers : int or array of shape [n_centers, n_features], optional - (default=3) The number of centers to generate, or the fixed center locations. - cluster_std: float or sequence of floats, optional (default=1.0) : - The standard deviation of the clusters. - center_box: pair of floats (min, max), optional (default=(-10.0, 10.0)) : - The bounding box for each cluster center when centers are generated at random. - shuffle : boolean, optional (default=True) - Shuffle the samples. - random_state : int, RandomState instance or None, optional (default=None) - If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. - Returns : - X : array of shape [n_samples, n_features] - The generated samples. - y : array of shape [n_samples] - The integer labels for cluster membership of each sample. - Examples - >>> from sklearn.datasets.samples_generator import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> X.shape (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) 
