8.4.2.6. sklearn.datasets.make_friedman3¶
- sklearn.datasets.make_friedman3(n_samples=100, noise=0.0, random_state=None)¶
- Generate the “Friedman #3” regression problem - This dataset is described in Friedman [1] and Breiman [2]. - Inputs X are 4 independent features uniformly distributed on the intervals: - 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. - The output y is created according to the formula: - y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) + noise * N(0, 1). - Parameters : - n_samples : int, optional (default=100) - The number of samples. - noise : float, optional (default=0.0) - The standard deviation of the gaussian noise applied to the output. - random_state : int, RandomState instance or None, optional (default=None) - If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. - Returns : - X : array of shape [n_samples, 4] - The input samples. - y : array of shape [n_samples] - The output values. - References - [R58] - J. Friedman, “Multivariate adaptive regression splines”, The Annals of Statistics 19 (1), pages 1-67, 1991. - [R59] - L. Breiman, “Bagging predictors”, Machine Learning 24, pages 123-140, 1996. 
