8.4.2.12. sklearn.datasets.make_sparse_coded_signal¶
- sklearn.datasets.make_sparse_coded_signal(n_samples, n_components, n_features, n_nonzero_coefs, random_state=None)¶
- Generate a signal as a sparse combination of dictionary elements. - Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each column of X has exactly n_nonzero_coefs non-zero elements. - Parameters : - n_samples : int - number of samples to generate - n_components: int, : - number of components in the dictionary - n_features : int - number of features of the dataset to generate - n_nonzero_coefs : int - number of active (non-zero) coefficients in each sample - random_state: int or RandomState instance, optional (default=None) : - seed used by the pseudo random number generator - Returns : - data: array of shape [n_features, n_samples] : - The encoded signal (Y). - dictionary: array of shape [n_features, n_components] : - The dictionary with normalized components (D). - code: array of shape [n_components, n_samples] : - The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-zero items (X). 
