This documentation is for scikit-learn version 0.11-gitOther versions


If you use the software, please consider citing scikit-learn.

This page

8.9.3. sklearn.gaussian_process.correlation_models.squared_exponential

sklearn.gaussian_process.correlation_models.squared_exponential(theta, d)

Squared exponential correlation model (Radial Basis Function). (Infinitely differentiable stochastic process, very smooth):

theta, dx --> r(theta, dx) = exp(  sum  - theta_i * (dx_i)^2 )
                                  i = 1
Parameters :

theta : array_like

An array with shape 1 (isotropic) or n (anisotropic) giving the autocorrelation parameter(s).

dx : array_like

An array with shape (n_eval, n_features) giving the componentwise distances between locations x and x’ at which the correlation model should be evaluated.

Returns :

r : array_like

An array with shape (n_eval, ) containing the values of the autocorrelation model.