8.15.1.12. sklearn.linear_model.LassoLarsCV¶
- class sklearn.linear_model.LassoLarsCV(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True)¶
- Cross-validated Lasso, using the LARS algorithm - The optimization objective for Lasso is: - (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 - Parameters : - fit_intercept : boolean - whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). - verbose : boolean or integer, optional - Sets the verbosity amount - normalize : boolean, optional - If True, the regressors X are normalized - precompute : True | False | ‘auto’ | array-like - Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let us decide. The Gram matrix can also be passed as argument. - max_iter: integer, optional : - Maximum number of iterations to perform. - cv : crossvalidation generator, optional - see sklearn.cross_validation module. If None is passed, default to a 5-fold strategy - max_n_alphas : integer, optional - The maximum number of points on the path used to compute the residuals in the cross-validation - n_jobs : integer, optional - Number of CPUs to use during the cross validation. If ‘-1’, use all the CPUs - eps: float, optional : - The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. - copy_X : boolean, optional, default True - If True, X will be copied; else, it may be overwritten. - Notes - The object solves the same problem as the LassoCV object. However, unlike the LassoCV, it find the relevent alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to heavily multicollinear datasets. - It is more efficient than the LassoCV if only a small number of features are selected compared to the total number, for instance if there are very few samples compared to the number of features. - Attributes - coef_ - array, shape = [n_features] - parameter vector (w in the fomulation formula) - intercept_ - float - independent term in decision function. - coef_path: array, shape = [n_features, n_alpha] - the varying values of the coefficients along the path - alphas_: array, shape = [n_alpha] - the different values of alpha along the path - cv_alphas: array, shape = [n_cv_alphas] - all the values of alpha along the path for the different folds - cv_mse_path_: array, shape = [n_folds, n_cv_alphas] - the mean square error on left-out for each fold along the path (alpha values given by cv_alphas) - Methods - decision_function(X) - Decision function of the linear model - fit(X, y) - Fit the model using X, y as training data. - get_params([deep]) - Get parameters for the estimator - predict(X) - Predict using the linear model - score(X, y) - Returns the coefficient of determination R^2 of the prediction. - set_params(**params) - Set the parameters of the estimator. - __init__(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True)¶
 - decision_function(X)¶
- Decision function of the linear model - Parameters : - X : numpy array of shape [n_samples, n_features] - Returns : - C : array, shape = [n_samples] - Returns predicted values. 
 - fit(X, y)¶
- Fit the model using X, y as training data. - Parameters : - X : array-like, shape = [n_samples, n_features] - Training data. - y : array-like, shape = [n_samples] - Target values. - Returns : - self : object - returns an instance of self. 
 - get_params(deep=True)¶
- Get parameters for the estimator - Parameters : - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 - predict(X)¶
- Predict using the linear model - Parameters : - X : numpy array of shape [n_samples, n_features] - Returns : - C : array, shape = [n_samples] - Returns predicted values. 
 - score(X, y)¶
- Returns the coefficient of determination R^2 of the prediction. - The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse. - Parameters : - X : array-like, shape = [n_samples, n_features] - Training set. - y : array-like, shape = [n_samples] - Returns : - z : float 
 - set_params(**params)¶
- Set the parameters of the estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object. - Returns : - self : 
 
