8.15.1.1. sklearn.linear_model.LinearRegression¶
- class sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True)¶
- Ordinary least squares Linear Regression. - Parameters : - fit_intercept : boolean, optional - wether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). - normalize : boolean, optional - If True, the regressors X are normalized - Notes - From the implementation point of view, this is just plain Ordinary Least Squares (numpy.linalg.lstsq) wrapped as a predictor object. - Attributes - coef_ - array - Estimated coefficients for the linear regression problem. - intercept_ - array - Independent term in the linear model. - Methods - decision_function(X) - Decision function of the linear model - fit(X, y) - Fit linear model. - get_params([deep]) - Get parameters for the estimator - predict(X) - Predict using the linear model - score(X, y) - Returns the coefficient of determination R^2 of the prediction. - set_params(**params) - Set the parameters of the estimator. - __init__(fit_intercept=True, normalize=False, copy_X=True)¶
 - decision_function(X)¶
- Decision function of the linear model - Parameters : - X : numpy array of shape [n_samples, n_features] - Returns : - C : array, shape = [n_samples] - Returns predicted values. 
 - fit(X, y)¶
- Fit linear model. - Parameters : - X : numpy array or sparse matrix of shape [n_samples,n_features] - Training data - y : numpy array of shape [n_samples] - Target values - Returns : - ——- : - self : returns an instance of self. 
 - get_params(deep=True)¶
- Get parameters for the estimator - Parameters : - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 - predict(X)¶
- Predict using the linear model - Parameters : - X : numpy array of shape [n_samples, n_features] - Returns : - C : array, shape = [n_samples] - Returns predicted values. 
 - score(X, y)¶
- Returns the coefficient of determination R^2 of the prediction. - The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse. - Parameters : - X : array-like, shape = [n_samples, n_features] - Training set. - y : array-like, shape = [n_samples] - Returns : - z : float 
 - set_params(**params)¶
- Set the parameters of the estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object. - Returns : - self : 
 
