8.15.2.1. sklearn.linear_model.sparse.Lasso¶
- class sklearn.linear_model.sparse.Lasso(alpha=1.0, fit_intercept=False, normalize=False, max_iter=1000, tol=0.0001)¶
- Linear Model trained with L1 prior as regularizer - This implementation works on scipy.sparse X and dense coef_. Technically this is the same as Elastic Net with the L2 penalty set to zero. - Parameters : - alpha : float - Constant that multiplies the L1 term. Defaults to 1.0 - `coef_` : ndarray of shape n_features - The initial coeffients to warm-start the optimization - fit_intercept: bool : - Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. - Methods - decision_function(X) - Decision function of the linear model - fit(X, y) - Fit current model with coordinate descent - get_params([deep]) - Get parameters for the estimator - predict(X) - Predict using the linear model - score(X, y) - Returns the coefficient of determination R^2 of the prediction. - set_params(**params) - Set the parameters of the estimator. - __init__(alpha=1.0, fit_intercept=False, normalize=False, max_iter=1000, tol=0.0001)¶
 - decision_function(X)¶
- Decision function of the linear model - Parameters : - X : scipy.sparse matrix of shape [n_samples, n_features] - Returns : - array, shape = [n_samples] with the predicted real values : 
 - fit(X, y)¶
- Fit current model with coordinate descent - X is expected to be a sparse matrix. For maximum efficiency, use a sparse matrix in CSC format (scipy.sparse.csc_matrix) 
 - get_params(deep=True)¶
- Get parameters for the estimator - Parameters : - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 - predict(X)¶
- Predict using the linear model - Parameters : - X : numpy array of shape [n_samples, n_features] - Returns : - C : array, shape = [n_samples] - Returns predicted values. 
 - score(X, y)¶
- Returns the coefficient of determination R^2 of the prediction. - The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse. - Parameters : - X : array-like, shape = [n_samples, n_features] - Training set. - y : array-like, shape = [n_samples] - Returns : - z : float 
 - set_params(**params)¶
- Set the parameters of the estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object. - Returns : - self : 
 
