8.20.1. sklearn.naive_bayes.GaussianNB¶
- class sklearn.naive_bayes.GaussianNB¶
- Gaussian Naive Bayes (GaussianNB) - Parameters : - X : array-like, shape = [n_samples, n_features] - Training vector, where n_samples in the number of samples and n_features is the number of features. - y : array, shape = [n_samples] - Target vector relative to X - Examples - >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> Y = np.array([1, 1, 1, 2, 2, 2]) >>> from sklearn.naive_bayes import GaussianNB >>> clf = GaussianNB() >>> clf.fit(X, Y) GaussianNB() >>> print clf.predict([[-0.8, -1]]) [1] - Attributes - class_prior_ - array, shape = [n_classes] - probability of each class. - theta_ - array, shape = [n_classes, n_features] - mean of each feature per class - sigma_ - array, shape = [n_classes, n_features] - variance of each feature per class - Methods - fit(X, y) - Fit Gaussian Naive Bayes according to X, y - get_params([deep]) - Get parameters for the estimator - predict(X) - Perform classification on an array of test vectors X. - predict_log_proba(X) - Return log-probability estimates for the test vector X. - predict_proba(X) - Return probability estimates for the test vector X. - score(X, y) - Returns the mean accuracy on the given test data and labels. - set_params(**params) - Set the parameters of the estimator. - __init__()¶
- x.__init__(...) initializes x; see help(type(x)) for signature 
 - class_prior¶
- DEPRECATED: GaussianNB.class_prior is deprecated and will be removed in version 0.12. Please use GaussianNB.class_prior_ instead. 
 - fit(X, y)¶
- Fit Gaussian Naive Bayes according to X, y - Parameters : - X : array-like, shape = [n_samples, n_features] - Training vectors, where n_samples is the number of samples and n_features is the number of features. - y : array-like, shape = [n_samples] - Target values. - Returns : - self : object - Returns self. 
 - get_params(deep=True)¶
- Get parameters for the estimator - Parameters : - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 - predict(X)¶
- Perform classification on an array of test vectors X. - Parameters : - X : array-like, shape = [n_samples, n_features] - Returns : - C : array, shape = [n_samples] - Predicted target values for X 
 - predict_log_proba(X)¶
- Return log-probability estimates for the test vector X. - Parameters : - X : array-like, shape = [n_samples, n_features] - Returns : - C : array-like, shape = [n_samples, n_classes] - Returns the log-probability of the sample for each class in the model, where classes are ordered arithmetically. 
 - predict_proba(X)¶
- Return probability estimates for the test vector X. - Parameters : - X : array-like, shape = [n_samples, n_features] - Returns : - C : array-like, shape = [n_samples, n_classes] - Returns the probability of the sample for each class in the model, where classes are ordered arithmetically. 
 - score(X, y)¶
- Returns the mean accuracy on the given test data and labels. - Parameters : - X : array-like, shape = [n_samples, n_features] - Training set. - y : array-like, shape = [n_samples] - Labels for X. - Returns : - z : float 
 - set_params(**params)¶
- Set the parameters of the estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object. - Returns : - self : 
 - sigma¶
- DEPRECATED: GaussianNB.sigma is deprecated and will be removed in version 0.12. Please use GaussianNB.sigma_ instead. 
 - theta¶
- DEPRECATED: GaussianNB.theta is deprecated and will be removed in version 0.12. Please use GaussianNB.theta_ instead. 
 
