8.13.1. sklearn.semi_supervised.LabelPropagation¶
- class sklearn.semi_supervised.LabelPropagation(kernel='rbf', gamma=20, n_neighbors=7, alpha=1, max_iters=30, tol=0.001)¶
Label Propagation classifier
Parameters : kernel : {‘knn’, ‘rbf’}
String identifier for kernel function to use. Only ‘rbf’ and ‘knn’ kernels are currently supported..
gamma : float
parameter for rbf kernel
n_neighbors : integer > 0
parameter for knn kernel
alpha : float
clamping factor
max_iters : float
change maximum number of iterations allowed
tol : float
Convergence tolerance: threshold to consider the system at steady state
See also
- LabelSpreading
- Alternate label proagation strategy more robust to noise
References
Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf
Examples
>>> from sklearn import datasets >>> label_prop_model = LabelPropagation() >>> iris = datasets.load_iris() >>> random_unlabeled_points = np.where(np.random.random_integers(0, 1, ... size=len(iris.target))) >>> labels = np.copy(iris.target) >>> labels[random_unlabeled_points] = -1 >>> label_prop_model.fit(iris.data, labels) ... LabelPropagation(...)
Methods
fit(X, y) Fit a semi-supervised label propagation model based get_params([deep]) Get parameters for the estimator predict(X) Performs inductive inference across the model. predict_proba(X) Predict probability for each possible outcome. score(X, y) Returns the mean accuracy on the given test data and labels. set_params(**params) Set the parameters of the estimator. - __init__(kernel='rbf', gamma=20, n_neighbors=7, alpha=1, max_iters=30, tol=0.001)¶
- fit(X, y)¶
Fit a semi-supervised label propagation model based
All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a dedicated marker value for unlabeled samples.
Parameters : X : array-like, shape = [n_samples, n_features]
A {n_samples by n_samples} size matrix will be created from this
y : array_like, shape = [n_samples]
n_labeled_samples (unlabeled points are marked as -1) All unlabeled samples will be transductively assigned labels
Returns : self : returns an instance of self.
- get_params(deep=True)¶
Get parameters for the estimator
Parameters : deep: boolean, optional :
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- predict(X)¶
Performs inductive inference across the model.
Parameters : X : array_like, shape = [n_samples, n_features]
Returns : y : array_like, shape = [n_samples]
Predictions for input data
- predict_proba(X)¶
Predict probability for each possible outcome.
Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution).
Parameters : X : array_like, shape = [n_samples, n_features]
Returns : probabilities : array, shape = [n_samples, n_classes]
Normalized probability distributions across class labels
- score(X, y)¶
Returns the mean accuracy on the given test data and labels.
Parameters : X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Labels for X.
Returns : z : float
- set_params(**params)¶
Set the parameters of the estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns : self :