Download
Support
User Guide
Examples
Development
previous
|
next
|
modules
|
modules
|
index
This page
3. Supervised learning
3. Supervised learning
ΒΆ
3.1. Generalized Linear Models
3.1.1. Ordinary Least Squares (OLS)
3.1.1.1. OLS Complexity
3.1.2. Ridge Regression
3.1.2.1. Ridge Complexity
3.1.2.2. Generalized Cross-Validation
3.1.3. Lasso
3.1.4. Elastic Net
3.1.5. Least Angle Regression
3.1.6. LARS Lasso
3.1.6.1. Mathematical formulation
3.1.7. Bayesian Regression
3.1.7.1. Bayesian Ridge Regression
3.1.8. Automatic Relevance Determination - ARD
3.1.8.1. Mathematical formulation
3.1.9. Logisitic regression
3.1.10. Stochastic Gradient Descent - SGD
3.2. Support Vector Machines
3.2.1. Classification
3.2.1.1. Multi-class classification
3.2.1.2. Unbalanced problems
3.2.2. Regression
3.2.3. Density estimation, outliers detection
3.2.4. Support Vector machines for sparse data
3.2.5. Complexity
3.2.6. Tips on Practical Use
3.2.7. Kernel functions
3.2.7.1. Custom Kernels
3.2.7.1.1. Using python functions as kernels
3.2.7.1.2. Using the Gram matrix
3.2.8. Mathematical formulation
3.2.8.1. SVC
3.2.8.2. NuSVC
3.2.9. Implementation details
3.3. Stochastic Gradient Descent
3.3.1. Classification
3.3.2. Regression
3.3.3. Stochastic Gradient Descent for sparse data
3.3.4. Complexity
3.3.5. Tips on Practical Use
3.3.6. Mathematical formulation
3.3.6.1. SGD
3.3.7. Implementation details
3.4. Nearest Neighbors
3.4.1. Classification
3.4.2. Regression
3.4.3. Efficient implementation: the ball tree
3.5. Feature selection
3.5.1. Univariate feature selection
3.5.1.1. Feature scoring functions
3.5.1.1.1. For classification
3.5.1.1.2. For regression
3.6. Gaussian Processes
3.6.1. An introductory regression example
3.6.2. Mathematical formulation
3.6.2.1. The initial assumption
3.6.2.2. The best linear unbiased prediction (BLUP)
3.6.2.3. The empirical best linear unbiased predictor (EBLUP)
3.6.3. Correlation Models
3.6.4. Regression Models
3.6.5. Implementation details
3.7. Partial Least Squares
3.8. Naive Bayes
3.8.1. Gaussian Naive Bayes