9.2.1. sklearn.linear_model.LinearRegression¶
- class sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, overwrite_X=False)¶
Ordinary least squares Linear Regression.
Notes
From the implementation point of view, this is just plain Ordinary Least Squares (numpy.linalg.lstsq) wrapped as a predictor object.
Attributes
coef_ array Estimated coefficients for the linear regression problem. intercept_ array Independent term in the linear model. Methods
fit(X, y) Fit linear model. predict(X) Predict using the linear model score(X, y) Returns the coefficient of determination of the prediction set_params(**params) Set the parameters of the estimator. - __init__(fit_intercept=True, normalize=False, overwrite_X=False)¶
- fit(X, y)¶
Fit linear model.
Parameters : X : numpy array of shape [n_samples,n_features]
Training data
y : numpy array of shape [n_samples]
Target values
fit_intercept : boolean, optional
wether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
normalize : boolean, optional
If True, the regressors X are normalized
Returns : self : returns an instance of self.
- predict(X)¶
Predict using the linear model
Parameters : X : numpy array of shape [n_samples, n_features]
Returns : C : array, shape = [n_samples]
Returns predicted values.
- score(X, y)¶
Returns the coefficient of determination of the prediction
Parameters : X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Returns : z : float
- set_params(**params)¶
Set the parameters of the estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns : self :