9.2.2. sklearn.linear_model.Ridge¶
- class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, overwrite_X=False, tol=0.001)¶
Ridge regression.
Parameters : alpha : float
Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to (2*C)^-1 in other linear models such as LogisticRegression or LinearSVC.
fit_intercept : boolean
Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
normalize : boolean, optional
If True, the regressors X are normalized
overwrite_X : boolean, optional
If True, X will not be copied Default is False
tol: float :
Precision of the solution.
Examples
>>> from sklearn.linear_model import Ridge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = Ridge(alpha=1.0) >>> clf.fit(X, y) Ridge(alpha=1.0, fit_intercept=True, normalize=False, overwrite_X=False, tol=0.001)
Attributes
coef_: array, shape = [n_features] or [n_responses, n_features] Weight vector(s). Methods
fit(X, y[, sample_weight, solver]) Fit Ridge regression model predict(X) Predict using the linear model score(X, y) Returns the coefficient of determination of the prediction set_params(**params) Set the parameters of the estimator. - __init__(alpha=1.0, fit_intercept=True, normalize=False, overwrite_X=False, tol=0.001)¶
- fit(X, y, sample_weight=1.0, solver='auto')¶
Fit Ridge regression model
Parameters : X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training data
y : array-like, shape = [n_samples] or [n_samples, n_responses]
Target values
sample_weight : float or numpy array of shape [n_samples]
Individual weights for each sample
solver : {‘auto’, ‘dense_cholesky’, ‘sparse_cg’}
Solver to use in the computational routines. ‘delse_cholesky’ will use the standard scipy.linalg.solve function, ‘sparse_cg’ will use the a conjugate gradient solver as found in scipy.sparse.linalg.cg while ‘auto’ will chose the most appropiate depending on the matrix X.
Returns : self : returns an instance of self.
- predict(X)¶
Predict using the linear model
Parameters : X : numpy array of shape [n_samples, n_features]
Returns : C : array, shape = [n_samples]
Returns predicted values.
- score(X, y)¶
Returns the coefficient of determination of the prediction
Parameters : X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Returns : z : float
- set_params(**params)¶
Set the parameters of the estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns : self :