Download
Support
User Guide
Examples
Development
previous
|
next
|
modules
|
modules
|
index
This page
4. Unsupervised learning
Citing
Please consider
citing the scikit-learn
.
4. Unsupervised learning
¶
4.1. Gaussian mixture models
4.1.1. Expectation-maximization
4.1.2. Variational inference
4.1.3. The Dirichlet Process
4.1.3.1. GMM classifier
4.1.3.2. Variational Gaussian mixtures: VBGMM classifier
4.1.3.3. Infinite Gaussian mixtures: DPGMM classifier
4.2. Manifold learning
4.2.1. Introduction
4.2.2. Isomap
4.2.2.1. Complexity
4.2.3. Locally Linear Embedding
4.2.3.1. Complexity
4.2.4. Modified Locally Linear Embedding
4.2.4.1. Complexity
4.2.5. Hessian Eigenmapping
4.2.5.1. Complexity
4.2.6. Local Tangent Space Alignment
4.2.6.1. Complexity
4.2.7. Tips on practical use
4.3. Clustering
4.3.1. K-means
4.3.1.1. Mini Batch K-Means
4.3.2. Affinity propagation
4.3.3. Mean Shift
4.3.4. Spectral clustering
4.3.5. Hierarchical clustering
4.3.5.1. Adding connectivity constraints
4.3.6. DBSCAN
4.3.7. Clustering performance evaluation
4.3.7.1. Inertia
4.3.7.1.1. Presentation and usage
4.3.7.1.2. Advantages
4.3.7.1.3. Drawbacks
4.3.7.2. Ajusted Rand index
4.3.7.2.1. Presentation and usage
4.3.7.2.2. Advantages
4.3.7.2.3. Drawbacks
4.3.7.2.4. Mathematical formulation
4.3.7.3. Homogeneity, completeness and V-measure
4.3.7.3.1. Presentation and usage
4.3.7.3.2. Advantages
4.3.7.3.3. Drawbacks
4.3.7.3.4. Mathematical formulation
4.4. Decomposing signals in components (matrix factorization problems)
4.4.1. Principal component analysis (PCA)
4.4.1.1. Exact PCA and probabilistic interpretation
4.4.1.2. Approximate PCA
4.4.1.3. Kernel PCA
4.4.1.4. Sparse Principal Components Analysis (SparsePCA and MiniBatchSparsePCA)
4.4.2. Dictionary Learning
4.4.2.1. Generic dictionary learning
4.4.2.2. Mini-batch dictionary learning
4.4.3. Independent component analysis (ICA)
4.4.4. Non-negative matrix factorization (NMF or NNMF)
4.5. Covariance estimation
4.5.1. Empirical covariance
4.5.2. Shrunk Covariance
4.5.2.1. Basic shrinkage
4.5.2.2. Ledoit-Wolf shrinkage
4.5.2.3. Oracle Approximating Shrinkage
4.6. Hidden Markov Models