Plot different SVM classifiers in the iris dataset¶
Comparison of different linear SVM classifiers on the iris dataset. It will plot the decision surface for four different SVM classifiers.
![../../_images/plot_iris_1.png](../../_images/plot_iris_1.png)
Python source code: plot_iris.py
print __doc__
import numpy as np
import pylab as pl
from sklearn import svm, datasets
# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could
# avoid this ugly slicing by using a two-dim dataset
Y = iris.target
h = .02 # step size in the mesh
# we create an instance of SVM and fit out data. We do not scale our
# data since we want to plot the support vectors
svc = svm.SVC(kernel='linear').fit(X, Y)
rbf_svc = svm.SVC(kernel='rbf', gamma=0.7).fit(X, Y)
poly_svc = svm.SVC(kernel='poly', degree=3).fit(X, Y)
lin_svc = svm.LinearSVC().fit(X, Y)
# create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
# title for the plots
titles = ['SVC with linear kernel',
'SVC with RBF kernel',
'SVC with polynomial (degree 3) kernel',
'LinearSVC (linear kernel)']
pl.set_cmap(pl.cm.Paired)
for i, clf in enumerate((svc, rbf_svc, poly_svc, lin_svc)):
# Plot the decision boundary. For that, we will asign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
pl.subplot(2, 2, i + 1)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
pl.set_cmap(pl.cm.Paired)
pl.contourf(xx, yy, Z)
pl.axis('off')
# Plot also the training points
pl.scatter(X[:, 0], X[:, 1], c=Y)
pl.title(titles[i])
pl.show()