User guide: contents
- 1. Installing scikit-learn
 - 2. Getting started: an introduction to machine learning with scikit-learn
 - 3. Supervised learning
- 3.1. Generalized Linear Models
 - 3.2. Support Vector Machines
 - 3.3. Stochastic Gradient Descent
 - 3.4. Nearest Neighbors
 - 3.5. Gaussian Processes
 - 3.6. Partial Least Squares
 - 3.7. Naive Bayes
 - 3.8. Decision Trees
 - 3.9. Ensemble methods
 - 3.10. Multiclass and multilabel algorithms
 - 3.11. Feature selection
 
 - 4. Unsupervised learning
- 4.1. Gaussian mixture models
 - 4.2. Manifold learning
 - 4.3. Clustering
- 4.3.1. K-means
 - 4.3.2. Affinity propagation
 - 4.3.3. Mean Shift
 - 4.3.4. Spectral clustering
 - 4.3.5. Hierarchical clustering
 - 4.3.6. DBSCAN
 - 4.3.7. Clustering performance evaluation
 
 - 4.4. Decomposing signals in components (matrix factorization problems)
 - 4.5. Covariance estimation
 - 4.6. Novelty and Outlier Detection
 - 4.7. Hidden Markov Models
 
 - 5. Model Selection
 - 6. Dataset transformations
 - 7. Dataset loading utilities
- 7.1. General dataset API
 - 7.2. Toy datasets
 - 7.3. Sample images
 - 7.4. Sample generators
 - 7.5. Datasets in svmlight / libsvm format
 - 7.6. The Olivetti faces dataset
 - 7.7. The 20 newsgroups text dataset
 - 7.8. Downloading datasets from the mldata.org repository
 - 7.9. The Labeled Faces in the Wild face recognition dataset
 
 - 8. Reference
- 8.1. sklearn.cluster: Clustering
 - 8.2. sklearn.covariance: Covariance Estimators
- 8.2.1. sklearn.covariance.EmpiricalCovariance
 - 8.2.2. sklearn.covariance.ShrunkCovariance
 - 8.2.3. sklearn.covariance.LedoitWolf
 - 8.2.4. sklearn.covariance.OAS
 - 8.2.5. sklearn.covariance.GraphLasso
 - 8.2.6. sklearn.covariance.GraphLassoCV
 - 8.2.7. sklearn.covariance.MinCovDet
 - 8.2.8. sklearn.covariance.empirical_covariance
 - 8.2.9. sklearn.covariance.ledoit_wolf
 - 8.2.10. sklearn.covariance.shrunk_covariance
 - 8.2.11. sklearn.covariance.oas
 - 8.2.12. sklearn.covariance.graph_lasso
 
 - 8.3. sklearn.cross_validation: Cross Validation
- 8.3.1. sklearn.cross_validation.LeaveOneOut
 - 8.3.2. sklearn.cross_validation.LeavePOut
 - 8.3.3. sklearn.cross_validation.KFold
 - 8.3.4. sklearn.cross_validation.StratifiedKFold
 - 8.3.5. sklearn.cross_validation.LeaveOneLabelOut
 - 8.3.6. sklearn.cross_validation.LeavePLabelOut
 - 8.3.7. sklearn.cross_validation.Bootstrap
 - 8.3.8. sklearn.cross_validation.ShuffleSplit
 
 - 8.4. sklearn.datasets: Datasets
- 8.4.1. Loaders
- 8.4.1.1. sklearn.datasets.load_20newsgroups
 - 8.4.1.2. sklearn.datasets.fetch_20newsgroups
 - 8.4.1.3. sklearn.datasets.fetch_20newsgroups_vectorized
 - 8.4.1.4. sklearn.datasets.load_boston
 - 8.4.1.5. sklearn.datasets.load_diabetes
 - 8.4.1.6. sklearn.datasets.load_digits
 - 8.4.1.7. sklearn.datasets.load_files
 - 8.4.1.8. sklearn.datasets.load_iris
 - 8.4.1.9. sklearn.datasets.load_lfw_pairs
 - 8.4.1.10. sklearn.datasets.fetch_lfw_pairs
 - 8.4.1.11. sklearn.datasets.load_lfw_people
 - 8.4.1.12. sklearn.datasets.fetch_lfw_people
 - 8.4.1.13. sklearn.datasets.load_linnerud
 - 8.4.1.14. sklearn.datasets.fetch_olivetti_faces
 - 8.4.1.15. sklearn.datasets.load_sample_image
 - 8.4.1.16. sklearn.datasets.load_sample_images
 
 - 8.4.2. Samples generator
- 8.4.2.1. sklearn.datasets.make_blobs
 - 8.4.2.2. sklearn.datasets.make_classification
 - 8.4.2.3. sklearn.datasets.make_friedman1
 - 8.4.2.4. sklearn.datasets.make_friedman2
 - 8.4.2.5. sklearn.datasets.make_friedman3
 - 8.4.2.6. sklearn.datasets.make_low_rank_matrix
 - 8.4.2.7. sklearn.datasets.make_multilabel_classification
 - 8.4.2.8. sklearn.datasets.make_regression
 - 8.4.2.9. sklearn.datasets.make_s_curve
 - 8.4.2.10. sklearn.datasets.make_sparse_coded_signal
 - 8.4.2.11. sklearn.datasets.make_sparse_spd_matrix
 - 8.4.2.12. sklearn.datasets.make_sparse_uncorrelated
 - 8.4.2.13. sklearn.datasets.make_spd_matrix
 - 8.4.2.14. sklearn.datasets.make_swiss_roll
 
 
 - 8.4.1. Loaders
 - 8.5. sklearn.decomposition: Matrix Decomposition
- 8.5.1. sklearn.decomposition.PCA
 - 8.5.2. sklearn.decomposition.ProbabilisticPCA
 - 8.5.3. sklearn.decomposition.ProjectedGradientNMF
 - 8.5.4. sklearn.decomposition.RandomizedPCA
 - 8.5.5. sklearn.decomposition.KernelPCA
 - 8.5.6. sklearn.decomposition.FastICA
 - 8.5.7. sklearn.decomposition.NMF
 - 8.5.8. sklearn.decomposition.SparsePCA
 - 8.5.9. sklearn.decomposition.MiniBatchSparsePCA
 - 8.5.10. sklearn.decomposition.SparseCoder
 - 8.5.11. sklearn.decomposition.DictionaryLearning
 - 8.5.12. sklearn.decomposition.MiniBatchDictionaryLearning
 - 8.5.13. sklearn.decomposition.fastica
 - 8.5.14. sklearn.decomposition.dict_learning
 - 8.5.15. sklearn.decomposition.dict_learning_online
 - 8.5.16. sklearn.decomposition.sparse_encode
 
 - 8.6. sklearn.ensemble: Ensemble Methods
 - 8.7. sklearn.feature_extraction: Feature Extraction
- 8.7.1. From images
 - 8.7.2. From text
- 8.7.2.1. sklearn.feature_extraction.text.RomanPreprocessor
 - 8.7.2.2. sklearn.feature_extraction.text.WordNGramAnalyzer
 - 8.7.2.3. sklearn.feature_extraction.text.CharNGramAnalyzer
 - 8.7.2.4. sklearn.feature_extraction.text.CountVectorizer
 - 8.7.2.5. sklearn.feature_extraction.text.TfidfTransformer
 - 8.7.2.6. sklearn.feature_extraction.text.Vectorizer
 
 
 - 8.8. sklearn.feature_selection: Feature Selection
- 8.8.1. sklearn.feature_selection.SelectPercentile
 - 8.8.2. sklearn.feature_selection.SelectKBest
 - 8.8.3. sklearn.feature_selection.SelectFpr
 - 8.8.4. sklearn.feature_selection.SelectFdr
 - 8.8.5. sklearn.feature_selection.SelectFwe
 - 8.8.6. sklearn.feature_selection.RFE
 - 8.8.7. sklearn.feature_selection.RFECV
 - 8.8.8. sklearn.feature_selection.chi2
 - 8.8.9. sklearn.feature_selection.f_classif
 - 8.8.10. sklearn.feature_selection.f_regression
 
 - 8.9. sklearn.gaussian_process: Gaussian Processes
- 8.9.1. sklearn.gaussian_process.GaussianProcess
 - 8.9.2. sklearn.gaussian_process.correlation_models.absolute_exponential
 - 8.9.3. sklearn.gaussian_process.correlation_models.squared_exponential
 - 8.9.4. sklearn.gaussian_process.correlation_models.generalized_exponential
 - 8.9.5. sklearn.gaussian_process.correlation_models.pure_nugget
 - 8.9.6. sklearn.gaussian_process.correlation_models.cubic
 - 8.9.7. sklearn.gaussian_process.correlation_models.linear
 - 8.9.8. sklearn.gaussian_process.regression_models.constant
 - 8.9.9. sklearn.gaussian_process.regression_models.linear
 - 8.9.10. sklearn.gaussian_process.regression_models.quadratic
 
 - 8.10. sklearn.grid_search: Grid Search
 - 8.11. sklearn.hmm: Hidden Markov Models
 - 8.12. sklearn.kernel_approximation Kernel Approximation
 - 8.13. sklearn.lda: Linear Discriminant Analysis
 - 8.14. sklearn.linear_model: Generalized Linear Models
- 8.14.1. For dense data
- 8.14.1.1. sklearn.linear_model.LinearRegression
 - 8.14.1.2. sklearn.linear_model.Ridge
 - 8.14.1.3. sklearn.linear_model.RidgeCV
 - 8.14.1.4. sklearn.linear_model.Lasso
 - 8.14.1.5. sklearn.linear_model.LassoCV
 - 8.14.1.6. sklearn.linear_model.ElasticNet
 - 8.14.1.7. sklearn.linear_model.ElasticNetCV
 - 8.14.1.8. sklearn.linear_model.Lars
 - 8.14.1.9. sklearn.linear_model.LassoLars
 - 8.14.1.10. sklearn.linear_model.LarsCV
 - 8.14.1.11. sklearn.linear_model.LassoLarsCV
 - 8.14.1.12. sklearn.linear_model.LassoLarsIC
 - 8.14.1.13. sklearn.linear_model.LogisticRegression
 - 8.14.1.14. sklearn.linear_model.OrthogonalMatchingPursuit
 - 8.14.1.15. sklearn.linear_model.SGDClassifier
 - 8.14.1.16. sklearn.linear_model.SGDRegressor
 - 8.14.1.17. sklearn.linear_model.BayesianRidge
 - 8.14.1.18. sklearn.linear_model.ARDRegression
 - 8.14.1.19. sklearn.linear_model.lasso_path
 - 8.14.1.20. sklearn.linear_model.lars_path
 - 8.14.1.21. sklearn.linear_model.orthogonal_mp
 - 8.14.1.22. sklearn.linear_model.orthogonal_mp_gram
 
 - 8.14.2. For sparse data
 
 - 8.14.1. For dense data
 - 8.15. sklearn.manifold: Manifold Learning
 - 8.16. sklearn.metrics: Metrics
- 8.16.1. Classification metrics
- 8.16.1.1. sklearn.metrics.confusion_matrix
 - 8.16.1.2. sklearn.metrics.roc_curve
 - 8.16.1.3. sklearn.metrics.auc
 - 8.16.1.4. sklearn.metrics.precision_score
 - 8.16.1.5. sklearn.metrics.recall_score
 - 8.16.1.6. sklearn.metrics.fbeta_score
 - 8.16.1.7. sklearn.metrics.f1_score
 - 8.16.1.8. sklearn.metrics.precision_recall_fscore_support
 - 8.16.1.9. sklearn.metrics.classification_report
 - 8.16.1.10. sklearn.metrics.precision_recall_curve
 - 8.16.1.11. sklearn.metrics.zero_one_score
 - 8.16.1.12. sklearn.metrics.zero_one
 - 8.16.1.13. sklearn.metrics.hinge_loss
 
 - 8.16.2. Regression metrics
 - 8.16.3. Clustering metrics
- 8.16.3.1. sklearn.metrics.adjusted_rand_score
 - 8.16.3.2. sklearn.metrics.adjusted_mutual_info_score
 - 8.16.3.3. sklearn.metrics.homogeneity_completeness_v_measure
 - 8.16.3.4. sklearn.metrics.homogeneity_score
 - 8.16.3.5. sklearn.metrics.completeness_score
 - 8.16.3.6. sklearn.metrics.v_measure_score
 - 8.16.3.7. sklearn.metrics.silhouette_score
 
 - 8.16.4. Pairwise metrics
- 8.16.4.1. sklearn.metrics.pairwise.euclidean_distances
 - 8.16.4.2. sklearn.metrics.pairwise.manhattan_distances
 - 8.16.4.3. sklearn.metrics.pairwise.linear_kernel
 - 8.16.4.4. sklearn.metrics.pairwise.polynomial_kernel
 - 8.16.4.5. sklearn.metrics.pairwise.rbf_kernel
 - 8.16.4.6. sklearn.metrics.pairwise.distance_metrics
 - 8.16.4.7. sklearn.metrics.pairwise.pairwise_distances
 - 8.16.4.8. sklearn.metrics.pairwise.kernel_metrics
 - 8.16.4.9. sklearn.metrics.pairwise.pairwise_kernels
 
 
 - 8.16.1. Classification metrics
 - 8.17. sklearn.mixture: Gaussian Mixture Models
 - 8.18. sklearn.multiclass: Multiclass and multilabel classification
- 8.18.1. Multiclass and multilabel classification strategies
 - 8.18.2. sklearn.multiclass.OneVsRestClassifier
 - 8.18.3. sklearn.multiclass.OneVsOneClassifier
 - 8.18.4. sklearn.multiclass.OutputCodeClassifier
 - 8.18.5. sklearn.multiclass.fit_ovr
 - 8.18.6. sklearn.multiclass.predict_ovr
 - 8.18.7. sklearn.multiclass.fit_ovo
 - 8.18.8. sklearn.multiclass.predict_ovo
 - 8.18.9. sklearn.multiclass.fit_ecoc
 - 8.18.10. sklearn.multiclass.predict_ecoc
 
 - 8.19. sklearn.naive_bayes: Naive Bayes
 - 8.20. sklearn.neighbors: Nearest Neighbors
- 8.20.1. sklearn.neighbors.NearestNeighbors
 - 8.20.2. sklearn.neighbors.KNeighborsClassifier
 - 8.20.3. sklearn.neighbors.RadiusNeighborsClassifier
 - 8.20.4. sklearn.neighbors.KNeighborsRegressor
 - 8.20.5. sklearn.neighbors.RadiusNeighborsRegressor
 - 8.20.6. sklearn.neighbors.BallTree
 - 8.20.7. sklearn.neighbors.kneighbors_graph
 - 8.20.8. sklearn.neighbors.radius_neighbors_graph
 
 - 8.21. sklearn.pls: Partial Least Squares
 - 8.22. sklearn.pipeline: Pipeline
 - 8.23. sklearn.preprocessing: Preprocessing and Normalization
- 8.23.1. sklearn.preprocessing.Scaler
 - 8.23.2. sklearn.preprocessing.Normalizer
 - 8.23.3. sklearn.preprocessing.Binarizer
 - 8.23.4. sklearn.preprocessing.LabelBinarizer
 - 8.23.5. sklearn.preprocessing.KernelCenterer
 - 8.23.6. sklearn.preprocessing.scale
 - 8.23.7. sklearn.preprocessing.normalize
 - 8.23.8. sklearn.preprocessing.binarize
 
 - 8.24. sklearn.svm: Support Vector Machines
 - 8.25. sklearn.tree: Decision Trees
 - 8.26. sklearn.utils: Utilities