8.14.1.2. sklearn.linear_model.Ridge¶
- class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, tol=0.001)¶
Linear least squares with l2 regularization.
This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_responses]).
Parameters : alpha : float
Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to (2*C)^-1 in other linear models such as LogisticRegression or LinearSVC.
fit_intercept : boolean
Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
normalize : boolean, optional
If True, the regressors X are normalized
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
tol: float :
Precision of the solution.
See also
RidgeClassifier, RidgeCV
Examples
>>> from sklearn.linear_model import Ridge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = Ridge(alpha=1.0) >>> clf.fit(X, y) Ridge(alpha=1.0, copy_X=True, fit_intercept=True, normalize=False, tol=0.001)
Attributes
coef_ array, shape = [n_features] or [n_responses, n_features] Weight vector(s). Methods
decision_function(X) Decision function of the linear model fit(X, y[, sample_weight, solver]) Fit Ridge regression model predict(X) Predict using the linear model score(X, y) Returns the coefficient of determination R^2 of the prediction. set_params(**params) Set the parameters of the estimator. - __init__(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, tol=0.001)¶
- decision_function(X)¶
Decision function of the linear model
Parameters : X : numpy array of shape [n_samples, n_features]
Returns : C : array, shape = [n_samples]
Returns predicted values.
- fit(X, y, sample_weight=1.0, solver='auto')¶
Fit Ridge regression model
Parameters : X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training data
y : array-like, shape = [n_samples] or [n_samples, n_responses]
Target values
sample_weight : float or numpy array of shape [n_samples]
Individual weights for each sample
solver : {‘auto’, ‘dense_cholesky’, ‘sparse_cg’}
Solver to use in the computational routines. ‘delse_cholesky’ will use the standard scipy.linalg.solve function, ‘sparse_cg’ will use the a conjugate gradient solver as found in scipy.sparse.linalg.cg while ‘auto’ will chose the most appropiate depending on the matrix X.
Returns : self : returns an instance of self.
- predict(X)¶
Predict using the linear model
Parameters : X : numpy array of shape [n_samples, n_features]
Returns : C : array, shape = [n_samples]
Returns predicted values.
- score(X, y)¶
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.
Parameters : X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Returns : z : float
- set_params(**params)¶
Set the parameters of the estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns : self :