This documentation is for scikit-learn version 0.11-gitOther versions

Citing

If you use the software, please consider citing scikit-learn.

This page

8.16.1.3. sklearn.metrics.auc

sklearn.metrics.auc(x, y)

Compute Area Under the Curve (AUC) using the trapezoidal rule

Parameters :

x : array, shape = [n]

x coordinates

y : array, shape = [n]

y coordinates

Returns :

auc : float

Examples

>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred)
>>> metrics.auc(fpr, tpr)
0.75