8.14.1.10. sklearn.linear_model.LarsCV¶
- class sklearn.linear_model.LarsCV(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True)¶
Cross-validated Least Angle Regression model
Parameters : fit_intercept : boolean
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
verbose : boolean or integer, optional
Sets the verbosity amount
normalize : boolean, optional
If True, the regressors X are normalized
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
precompute : True | False | ‘auto’ | array-like
Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let us decide. The Gram matrix can also be passed as argument.
max_iter: integer, optional :
Maximum number of iterations to perform.
cv : crossvalidation generator, optional
see sklearn.cross_validation module. If None is passed, default to a 5-fold strategy
n_jobs : integer, optional
Number of CPUs to use during the cross validation. If ‘-1’, use all the CPUs
eps: float, optional :
The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems.
See also
lars_path, LassoLARS, LassoLarsCV
Attributes
coef_ array, shape = [n_features] parameter vector (w in the fomulation formula) intercept_ float independent term in decision function. coef_path: array, shape = [n_features, n_alpha] the varying values of the coefficients along the path Methods
decision_function(X) Decision function of the linear model fit(X, y) Fit the model using X, y as training data. predict(X) Predict using the linear model score(X, y) Returns the coefficient of determination R^2 of the prediction. set_params(**params) Set the parameters of the estimator. - __init__(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, n_jobs=1, eps=2.2204460492503131e-16, copy_X=True)¶
- decision_function(X)¶
Decision function of the linear model
Parameters : X : numpy array of shape [n_samples, n_features]
Returns : C : array, shape = [n_samples]
Returns predicted values.
- fit(X, y)¶
Fit the model using X, y as training data.
Parameters : X : array-like, shape = [n_samples, n_features]
Training data.
y : array-like, shape = [n_samples]
Target values.
Returns : self : object
returns an instance of self.
- predict(X)¶
Predict using the linear model
Parameters : X : numpy array of shape [n_samples, n_features]
Returns : C : array, shape = [n_samples]
Returns predicted values.
- score(X, y)¶
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.
Parameters : X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Returns : z : float
- set_params(**params)¶
Set the parameters of the estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns : self :