3. Supervised learning¶
- 3.1. Generalized Linear Models
- 3.2. Support Vector Machines
- 3.3. Stochastic Gradient Descent
- 3.4. Nearest Neighbors
- 3.5. Gaussian Processes
- 3.6. Partial Least Squares
- 3.7. Naive Bayes
- 3.8. Decision Trees
- 3.9. Ensemble methods
- 3.10. Multiclass and multilabel algorithms
- 3.11. Feature selection