3.11. Feature selection¶
The classes in the sklearn.feature_selection module can be used for feature selection/dimensionality reduction on sample sets, either to improve estimators’ accuracy scores or to boost their performance on very high-dimensional datasets.
3.11.1. Univariate feature selection¶
Univariate feature selection works by selecting the best features based on univariate statistical tests. It can seen as a preprocessing step to an estimator. Scikit-Learn exposes feature selection routines a objects that implement the transform method:
- selecting the k-best features SelectKBest
- setting a percentile of features to keep SelectPercentile
- using common univariate statistical tests for each feature: false positive rate SelectFpr, false discovery rate SelectFdr, or family wise error SelectFwe.
These objects take as input a scoring function that returns univariate p-values:
- For regression: f_regression
- For classification: chi2 or f_classif
Feature selection with sparse data
If you use sparse data (i.e. data represented as sparse matrices), only chi2 will deal with the data without making it dense.
Warning
Beware not to use a regression scoring function with a classification problem, you will get useless results.
Examples:
3.11.2. Recursive feature elimination¶
Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), the goal of recursive feature elimination (RFE) is to select features by recursively considering smaller and smaller sets of features. First, the estimator is trained on the initial set of features and weights are assigned to each one of them. Then, features whose absolute weights are the smallest are pruned from the current set features. That procedure is recursively repeated on the pruned set until the desired number of features to select is eventually reached.
Examples:
- Recursive feature elimination: A recursive feature elimination example showing the relevance of pixels in a digit classification task.
- Recursive feature elimination with cross-validation: A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation.
3.11.3. L1-based feature selection¶
Linear models penalized with the L1 norm have sparse solutions. When the goal is to reduce the dimensionality of the data to use with another classifier, the transform method of LogisticRegression and LinearSVC can be used:
>>> from sklearn.svm import LinearSVC
>>> from sklearn.datasets import load_iris
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X.shape
(150, 4)
>>> X_new = LinearSVC(C=1, penalty="l1", dual=False).fit_transform(X, y)
>>> X_new.shape
(150, 2)
The parameter C controls the sparsity: the smaller the fewer features.
Examples:
- Classification of text documents using sparse features: Comparison of different algorithms for document classification including L1-based feature selection.
3.11.4. Tree-based feature selection¶
Tree-based estimators (see the sklearn.tree module and forest of trees in the sklearn.ensemble module) can be used to compute feature importances, which in turn can be used to discard irrelevant features:
>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.datasets import load_iris
>>> iris = load_iris()
>>> X, y = iris.data, iris.target
>>> X.shape
(150, 4)
>>> clf = ExtraTreesClassifier(compute_importances=True, random_state=0)
>>> X_new = clf.fit(X, y).transform(X)
>>> X_new.shape
(150, 2)
Examples:
- Feature importances with forests of trees: example on synthetic data showing the recovery of the actually meaningful features.
- Pixel importances with a parallel forest of trees: example on face recognition data.