This documentation is for scikit-learn version 0.11-gitOther versions

Citing

If you use the software, please consider citing scikit-learn.

This page

8.9.6. sklearn.gaussian_process.correlation_models.cubic

sklearn.gaussian_process.correlation_models.cubic(theta, d)

Cubic correlation model:

theta, dx --> r(theta, dx) =
      n
    prod max(0, 1 - 3(theta_j*d_ij)^2 + 2(theta_j*d_ij)^3) ,  i = 1,...,m
    j = 1
Parameters :

theta : array_like

An array with shape 1 (isotropic) or n (anisotropic) giving the autocorrelation parameter(s).

dx : array_like

An array with shape (n_eval, n_features) giving the componentwise distances between locations x and x’ at which the correlation model should be evaluated.

Returns :

r : array_like

An array with shape (n_eval, ) with the values of the autocorrelation model.