8.14.1.16. sklearn.linear_model.SGDRegressor¶
- class sklearn.linear_model.SGDRegressor(loss='squared_loss', penalty='l2', alpha=0.0001, rho=0.85, fit_intercept=True, n_iter=5, shuffle=False, verbose=0, p=0.1, seed=0, learning_rate='invscaling', eta0=0.01, power_t=0.25)¶
Linear model fitted by minimizing a regularized empirical loss with SGD
SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate).
The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection.
This implementation works with data represented as dense numpy arrays of floating point values for the features.
Parameters : loss : str, ‘squared_loss’ or ‘huber’
The loss function to be used. Defaults to ‘squared_loss’ which refers to the ordinary least squares fit. ‘huber’ is an epsilon insensitive loss function for robust regression.
penalty : str, ‘l2’ or ‘l1’ or ‘elasticnet’
The penalty (aka regularization term) to be used. Defaults to ‘l2’ which is the standard regularizer for linear SVM models. ‘l1’ and ‘elasticnet’ migh bring sparsity to the model (feature selection) not achievable with ‘l2’.
alpha : float
Constant that multiplies the regularization term. Defaults to 0.0001
rho : float
The Elastic Net mixing parameter, with 0 < rho <= 1. Defaults to 0.85.
fit_intercept: bool :
Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True.
n_iter: int, optional :
The number of passes over the training data (aka epochs). Defaults to 5.
shuffle: bool, optional :
Whether or not the training data should be shuffled after each epoch. Defaults to False.
seed: int, optional :
The seed of the pseudo random number generator to use when shuffling the data.
verbose: integer, optional :
The verbosity level.
p : float
Epsilon in the epsilon-insensitive huber loss function; only if loss==’huber’.
learning_rate : string, optional
The learning rate: constant: eta = eta0 optimal: eta = 1.0/(t+t0) invscaling: eta = eta0 / pow(t, power_t) [default]
eta0 : double, optional
The initial learning rate [default 0.01].
power_t : double, optional
The exponent for inverse scaling learning rate [default 0.25].
See also
Ridge, ElasticNet, Lasso, SVR
Examples
>>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = linear_model.SGDRegressor() >>> clf.fit(X, y) SGDRegressor(alpha=0.0001, eta0=0.01, fit_intercept=True, learning_rate='invscaling', loss='squared_loss', n_iter=5, p=0.1, penalty='l2', power_t=0.25, rho=0.85, seed=0, shuffle=False, verbose=0)
Attributes
coef_ array, shape = [n_features] Weights asigned to the features. intercept_ array, shape = [1] The intercept term. Methods
fit(X, y[, coef_init, intercept_init, ...]) Fit linear model with Stochastic Gradient Descent. predict(X) Predict using the linear model score(X, y) Returns the coefficient of determination R^2 of the prediction. set_params(**params) Set the parameters of the estimator. - __init__(loss='squared_loss', penalty='l2', alpha=0.0001, rho=0.85, fit_intercept=True, n_iter=5, shuffle=False, verbose=0, p=0.1, seed=0, learning_rate='invscaling', eta0=0.01, power_t=0.25)¶
- fit(X, y, coef_init=None, intercept_init=None, sample_weight=None)¶
Fit linear model with Stochastic Gradient Descent.
Parameters : X : numpy array of shape [n_samples,n_features]
Training data
y : numpy array of shape [n_samples]
Target values
coef_init : array, shape = [n_features]
The initial coeffients to warm-start the optimization.
intercept_init : array, shape = [1]
The initial intercept to warm-start the optimization.
sample_weight : array-like, shape = [n_samples], optional
Weights applied to individual samples (1. for unweighted).
Returns : self : returns an instance of self.
- predict(X)¶
Predict using the linear model
Parameters : X : array or scipy.sparse matrix of shape [n_samples, n_features]
Whether the numpy.array or scipy.sparse matrix is accepted depends on the actual implementation.
Returns : array, shape = [n_samples] :
Array containing the predicted class labels.
- score(X, y)¶
Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.
Parameters : X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Returns : z : float
- set_params(**params)¶
Set the parameters of the estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns : self :