This documentation is for scikit-learn version 0.11-gitOther versions

Citing

If you use the software, please consider citing scikit-learn.

This page

8.14.1.4. sklearn.linear_model.Lasso

class sklearn.linear_model.Lasso(alpha=1.0, fit_intercept=True, normalize=False, precompute='auto', copy_X=True, max_iter=1000, tol=0.0001)

Linear Model trained with L1 prior as regularizer (aka the Lasso)

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Technically the Lasso model is optimizing the same objective function as the Elastic Net with rho=1.0 (no L2 penalty).

Parameters :

alpha : float, optional

Constant that multiplies the L1 term. Defaults to 1.0

fit_intercept : boolean

whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).

normalize : boolean, optional

If True, the regressors X are normalized

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let us decide. The Gram matrix can also be passed as argument.

max_iter: int, optional :

The maximum number of iterations

tol: float, optional :

The tolerance for the optimization: if the updates are smaller than ‘tol’, the optimization code checks the dual gap for optimality and continues until it is smaller than tol.

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a fortran contiguous numpy array.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.Lasso(alpha=0.1)
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000,
   normalize=False, precompute='auto', tol=0.0001)
>>> print clf.coef_
[ 0.85  0.  ]
>>> print clf.intercept_
0.15

Attributes

coef_ array, shape = [n_features] parameter vector (w in the fomulation formula)
intercept_ float independent term in decision function.

Methods

decision_function(X) Decision function of the linear model
fit(X, y[, Xy, coef_init]) Fit Elastic Net model with coordinate descent
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.
__init__(alpha=1.0, fit_intercept=True, normalize=False, precompute='auto', copy_X=True, max_iter=1000, tol=0.0001)
decision_function(X)

Decision function of the linear model

Parameters :

X : numpy array of shape [n_samples, n_features]

Returns :

C : array, shape = [n_samples]

Returns predicted values.

fit(X, y, Xy=None, coef_init=None)

Fit Elastic Net model with coordinate descent

Parameters :

X: ndarray, (n_samples, n_features) :

Data

y: ndarray, (n_samples) :

Target

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed.

coef_init: ndarray of shape n_features :

The initial coeffients to warm-start the optimization

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a fortran contiguous numpy array if necessary.

To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.

predict(X)

Predict using the linear model

Parameters :

X : numpy array of shape [n_samples, n_features]

Returns :

C : array, shape = [n_samples]

Returns predicted values.

score(X, y)

Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.

Parameters :

X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns :

z : float

set_params(**params)

Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns :self :