This documentation is for scikit-learn version 0.11-gitOther versions

Citing

If you use the software, please consider citing scikit-learn.

This page

Non-linear SVM

Perform binary classification using non-linear SVC with RBF kernel. The target to predict is a XOR of the inputs.

The color map illustrates the decision function learn by the SVC.

../../_images/plot_svm_nonlinear_1.png

Python source code: plot_svm_nonlinear.py

print __doc__

import numpy as np
import pylab as pl
from sklearn import svm

xx, yy = np.meshgrid(np.linspace(-3, 3, 500),
                     np.linspace(-3, 3, 500))
np.random.seed(0)
X = np.random.randn(300, 2)
Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)

# fit the model
clf = svm.NuSVC()
clf.fit(X, Y)

# plot the decision function for each datapoint on the grid
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

pl.imshow(Z, interpolation='nearest',
            extent=(xx.min(), xx.max(), yy.min(), yy.max()),
            aspect='auto', origin='lower', cmap=pl.cm.PuOr_r)
contours = pl.contour(xx, yy, Z, levels=[0], linewidths=2,
                      linetypes='--')
pl.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=pl.cm.Paired)
pl.xticks(())
pl.yticks(())
pl.axis([-3, 3, -3, 3])
pl.show()