This documentation is for scikit-learn version 0.11-gitOther versions

Citing

If you use the software, please consider citing scikit-learn.

This page

Logistic Regression 3-class Classifier

Show below is a logistic-regression classifiers decision boundaries on the iris dataset. The datapoints are colored according to their labels.

../../_images/plot_iris_logistic_1.png

Python source code: plot_iris_logistic.py

print __doc__


# Code source: Gael Varoqueux
# Modified for Documentation merge by Jaques Grobler
# License: BSD

import numpy as np
import pylab as pl
from sklearn import linear_model, datasets

# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. 
Y = iris.target

h = .02 # step size in the mesh

logreg=linear_model.LogisticRegression(C=1e5)

# we create an instance of Neighbours Classifier and fit the data.
logreg.fit(X, Y)

# Plot the decision boundary. For that, we will asign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
x_min, x_max = X[:,0].min() - .5, X[:,0].max() + .5
y_min, y_max = X[:,1].min() - .5, X[:,1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
pl.figure(1, figsize=(4, 3))
pl.set_cmap(pl.cm.Paired)
pl.pcolormesh(xx, yy, Z)

# Plot also the training points
pl.scatter(X[:,0], X[:,1],c = Y, edgecolors='k' )
pl.xlabel('Sepal length')
pl.ylabel('Sepal width')

pl.xlim(xx.min(), xx.max())
pl.ylim(yy.min(), yy.max())
pl.xticks(())
pl.yticks(())

pl.show()