8.15.1.15. sklearn.linear_model.OrthogonalMatchingPursuit¶
- class sklearn.linear_model.OrthogonalMatchingPursuit(copy_X=True, copy_Gram=True, copy_Xy=True, n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize=True, precompute_gram=False)¶
- Orthogonal Mathching Pursuit model (OMP) - Parameters : - n_nonzero_coefs : int, optional - Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. - tol : float, optional - Maximum norm of the residual. If not None, overrides n_nonzero_coefs. - fit_intercept : boolean, optional - whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). - normalize : boolean, optional - If False, the regressors X are assumed to be already normalized. - precompute_gram : {True, False, ‘auto’}, - Whether to use a precomputed Gram and Xy matrix to speed up calculations. Improves performance when n_targets or n_samples is very large. Note that if you already have such matrices, you can pass them directly to the fit method. - copy_X : bool, optional - Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. - copy_Gram : bool, optional - Whether the gram matrix must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. - copy_Xy : bool, optional - Whether the covariance vector Xy must be copied by the algorithm. If False, it may be overwritten. - See also - orthogonal_mp, orthogonal_mp_gram, lars_path, Lars, LassoLars, decomposition.sparse_encode, decomposition.sparse_encode_parallel - Notes - Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) - This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf - Attributes - coef_ - array, shape = (n_features,) or (n_features, n_targets) - parameter vector (w in the fomulation formula) - intercept_ - float or array, shape =(n_targets,) - independent term in decision function. - Methods - decision_function(X) - Decision function of the linear model - fit(X, y[, Gram, Xy]) - Fit the model using X, y as training data. - get_params([deep]) - Get parameters for the estimator - predict(X) - Predict using the linear model - score(X, y) - Returns the coefficient of determination R^2 of the prediction. - set_params(**params) - Set the parameters of the estimator. - __init__(copy_X=True, copy_Gram=True, copy_Xy=True, n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize=True, precompute_gram=False)¶
 - decision_function(X)¶
- Decision function of the linear model - Parameters : - X : numpy array of shape [n_samples, n_features] - Returns : - C : array, shape = [n_samples] - Returns predicted values. 
 - fit(X, y, Gram=None, Xy=None)¶
- Fit the model using X, y as training data. - Parameters : - X: array-like, shape = (n_samples, n_features) : - Training data. - y: array-like, shape = (n_samples,) or (n_samples, n_targets) : - Target values. - Gram: array-like, shape = (n_features, n_features) (optional) : - Gram matrix of the input data: X.T * X - Xy: array-like, shape = (n_features,) or (n_features, n_targets) : - (optional) Input targets multiplied by X: X.T * y - Returns : - self: object : - returns an instance of self. 
 - get_params(deep=True)¶
- Get parameters for the estimator - Parameters : - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 - predict(X)¶
- Predict using the linear model - Parameters : - X : numpy array of shape [n_samples, n_features] - Returns : - C : array, shape = [n_samples] - Returns predicted values. 
 - score(X, y)¶
- Returns the coefficient of determination R^2 of the prediction. - The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse. - Parameters : - X : array-like, shape = [n_samples, n_features] - Training set. - y : array-like, shape = [n_samples] - Returns : - z : float 
 - set_params(**params)¶
- Set the parameters of the estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object. - Returns : - self : 
 
