8.15.1.16. sklearn.linear_model.Perceptron¶
- class sklearn.linear_model.Perceptron(penalty=None, alpha=0.0001, fit_intercept=True, n_iter=5, shuffle=False, verbose=0, eta0=1.0, n_jobs=1, seed=0, class_weight=None, warm_start=False)¶
Perceptron
Parameters : penalty : None, ‘l2’ or ‘l1’ or ‘elasticnet’
The penalty (aka regularization term) to be used. Defaults to None.
alpha : float
Constant that multiplies the regularization term if regularization is used. Defaults to 0.0001
fit_intercept: bool :
Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True.
n_iter: int, optional :
The number of passes over the training data (aka epochs). Defaults to 5.
shuffle: bool, optional :
Whether or not the training data should be shuffled after each epoch. Defaults to False.
seed: int, optional :
The seed of the pseudo random number generator to use when shuffling the data.
verbose: integer, optional :
The verbosity level
n_jobs: integer, optional :
The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means ‘all CPUs’. Defaults to 1.
eta0 : double
Constant by which the updates are multiplied. Defaults to 1.
class_weight : dict, {class_label
Preset for the class_weight fit parameter.
Weights associated with classes. If not given, all classes are supposed to have weight one.
The “auto” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies.
warm_start : bool, optional
When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution.
See also
Notes
Perceptron and SGDClassifier share the same underlying implementation. In fact, Perceptron() is equivalent to SGDClassifier(loss=”perceptron”, eta0=1, learning_rate=”constant”, penalty=None).
References
http://en.wikipedia.org/wiki/Perceptron and references therein.
Attributes
coef_ array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features. intercept_ array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. Methods
decision_function(X) Predict signed ‘distance’ to the hyperplane (aka confidence score) fit(X, y[, coef_init, intercept_init, ...]) Fit linear model with Stochastic Gradient Descent. fit_transform(X[, y]) Fit to data, then transform it get_params([deep]) Get parameters for the estimator partial_fit(X, y[, classes, class_weight, ...]) Fit linear model with Stochastic Gradient Descent. predict(X) Predict using the linear model predict_proba(X) Predict class membership probability score(X, y) Returns the mean accuracy on the given test data and labels. set_params(**params) Set the parameters of the estimator. transform(X[, threshold]) Reduce X to its most important features. - __init__(penalty=None, alpha=0.0001, fit_intercept=True, n_iter=5, shuffle=False, verbose=0, eta0=1.0, n_jobs=1, seed=0, class_weight=None, warm_start=False)¶
- classes¶
DEPRECATED: to be removed in v0.12; use classes_ instead.
- decision_function(X)¶
Predict signed ‘distance’ to the hyperplane (aka confidence score)
Parameters : X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Returns : array, shape = [n_samples] if n_classes == 2 else [n_samples,n_classes] :
The signed ‘distances’ to the hyperplane(s).
- fit(X, y, coef_init=None, intercept_init=None, class_weight=None, sample_weight=None)¶
Fit linear model with Stochastic Gradient Descent.
Parameters : X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training data
y : numpy array of shape [n_samples]
Target values
coef_init : array, shape = [n_classes,n_features]
The initial coeffients to warm-start the optimization.
intercept_init : array, shape = [n_classes]
The initial intercept to warm-start the optimization.
sample_weight : array-like, shape = [n_samples], optional
Weights applied to individual samples. If not provided, uniform weights are assumed.
Returns : self : returns an instance of self.
- fit_transform(X, y=None, **fit_params)¶
Fit to data, then transform it
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters : X : numpy array of shape [n_samples, n_features]
Training set.
y : numpy array of shape [n_samples]
Target values.
Returns : X_new : numpy array of shape [n_samples, n_features_new]
Transformed array.
Notes
This method just calls fit and transform consecutively, i.e., it is not an optimized implementation of fit_transform, unlike other transformers such as PCA.
- get_params(deep=True)¶
Get parameters for the estimator
Parameters : deep: boolean, optional :
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- partial_fit(X, y, classes=None, class_weight=None, sample_weight=None)¶
Fit linear model with Stochastic Gradient Descent.
Parameters : X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Subset of the training data
y : numpy array of shape [n_samples]
Subset of the target values
classes : array, shape = [n_classes]
Classes across all calls to partial_fit. Can be obtained by via np.unique(y_all), where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn’t need to contain all labels in classes.
sample_weight : array-like, shape = [n_samples], optional
Weights applied to individual samples. If not provided, uniform weights are assumed.
Returns : self : returns an instance of self.
- predict(X)¶
Predict using the linear model
Parameters : X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Returns : array, shape = [n_samples] :
Array containing the predicted class labels.
- predict_proba(X)¶
Predict class membership probability
Parameters : X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Returns : array, shape = [n_samples] if n_classes == 2 else [n_samples, :
n_classes] :
Contains the membership probabilities of the positive class.
- score(X, y)¶
Returns the mean accuracy on the given test data and labels.
Parameters : X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Labels for X.
Returns : z : float
- set_params(**params)¶
Set the parameters of the estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns : self :
- transform(X, threshold=None)¶
Reduce X to its most important features.
Parameters : X : array or scipy sparse matrix of shape [n_samples, n_features]
The input samples.
threshold : string, float or None, optional (default=None)
The threshold value to use for feature selection. Features whose importance is greater or equal are kept while the others are discarded. If “median” (resp. “mean”), then the threshold value is the median (resp. the mean) of the feature importances. A scaling factor (e.g., “1.25*mean”) may also be used. If None and if available, the object attribute threshold is used. Otherwise, “mean” is used by default.
Returns : X_r : array of shape [n_samples, n_selected_features]
The input samples with only the selected features.